Commutativity of the $h$-operator and two other operators on a real hypersurface in complex projective space
Identificadores
URI: https://hdl.handle.net/10481/106127Metadatos
Mostrar el registro completo del ítemMateria
$k$th generalized Tanaka–Webster connection Complex projective space Real hypersurface $k$th Cho operator Torsion operator $h$-operator
Fecha
2025-07-16Referencia bibliográfica
Pérez, J.d.D., Pérez-López, D. Commutativity of the h-operator and two other operators on a real hypersurface in complex projective space. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 119, 95 (2025)
Patrocinador
Departamento de Geometría y Topología de la Universidad de GranadaResumen
The almost contact metric structure on a real hypersurface $M$ in complex projective space
allows to define on $M$, for any nonnull real number $k$ and any operator $B$, two tensor fields of
type (1,2) denoted by $B^{(k)}_F$ and $B^{(k)}_T$ .We will classify real hypersurfaces in complex projective
space for which the $h$-operator satisfies that either $h^{(k)}_F = 0$ or $h^{(k)}_T = 0$.





