Afficher la notice abrégée

dc.contributor.authorMartínez Rojas, María
dc.contributor.authorCano Gutiérrez, Carlos 
dc.contributor.authorAlcalá Fernández, Jesús 
dc.contributor.authorSoto Hidalgo, José Manuel 
dc.date.accessioned2025-09-01T09:11:31Z
dc.date.available2025-09-01T09:11:31Z
dc.date.issued2025-07-23
dc.identifier.citationMartínez-Rojas, M., Cano, C., Alcalá-Fdez, J., & Soto-Hidalgo, J. M. (2025). Interpretable Fuzzy Control for Energy Management in Smart Buildings Using JFML-IoT and IEEE Std 1855-2016. Applied Sciences, 15 (15), 8208. https://doi.org/10.3390/app15158208es_ES
dc.identifier.urihttps://hdl.handle.net/10481/105906
dc.description.abstractThis paper presents an interpretable and modular framework for energy management in smart buildings based on fuzzy logic and the IEEE Std 1855-2016. The proposed system builds upon the JFML-IoT library, enabling the integration and execution of fuzzy rule-based systems on resource-constrained IoT devices using a lightweight and extensible architecture. Unlike conventional data-driven controllers, this approach emphasizes semantic transparency, expert-driven control logic, and compliance with fuzzy markup standards. The system is designed to enhance both operational efficiency and user comfort through transparent and explainable decision-making. A four-layer architecture structures the system into Perception, Communication, Processing, and Application layers, supporting real-time decisions based on environmental data. The fuzzy logic rules are defined collaboratively with domain experts and encoded in Fuzzy Markup Language to ensure interoperability and formalization of expert knowledge. While adherence to IEEE Std 1855-2016 facilitates system integration and standardization, the scientific contribution lies in the deployment of an interpretable, IoT-based control system validated in real conditions. A case study is conducted in a realistic indoor environment, using temperature, humidity, illuminance, occupancy, and CO2 sensors, along with HVAC and lighting actuators. The results demonstrate that the fuzzy inference engine generates context-aware control actions aligned with expert expectations. The proposed framework also opens possibilities for incorporating user-specific preferences and adaptive comfort strategies in future developments.es_ES
dc.description.sponsorshipMICIU/AEI (10.13039/501100011033) under Grant/Award Number PID2022-142151OB-I00es_ES
dc.description.sponsorshipInstituto de Salud Carlos III co-funded by the European Union and the European Regional Development Fund (ERDF)—A Way of Making Europe—under Grant/Award Numbers PI20/00711 and PI23/00129es_ES
dc.language.isoenges_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectsmart buildingses_ES
dc.subjectenergy managementes_ES
dc.subjectfuzzy rule-based systemses_ES
dc.subjectIEEE Std 1855-2016es_ES
dc.subjectfuzzy markup languagees_ES
dc.subjectinternet of thingses_ES
dc.titleInterpretable Fuzzy Control for Energy Management in Smart Buildings Using JFML-IoT and IEEE Std 1855-2016es_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/app15158208


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional