Afficher la notice abrégée

dc.contributor.authorNao Horiuchi, Lucas
dc.contributor.authorDelano Penha Marques Torres, Fábio
dc.contributor.authorBarbosa, Renata
dc.contributor.authorBatista Azevedo, Joyce
dc.contributor.authorGarcía-Villén, Fátima
dc.contributor.authorViseras Iborra, César Antonio 
dc.contributor.authorde Melo Barbosa, Raquel
dc.contributor.authorFialho, Rosana
dc.date.accessioned2025-07-31T07:38:59Z
dc.date.available2025-07-31T07:38:59Z
dc.date.issued2025-07-18
dc.identifier.citationL. N. Horiuchi, F. D. P. M. Torres, R. Barbosa, et al., “ Advanced Biodegradable Materials: The Development of PBS Hybrid Composites Reinforced With Natural Fibers, Lignin, and Sepiolite for Sustainable Applications,” Journal of Applied Polymer Science (2025): e57543, https://doi.org/10.1002/app.57543es_ES
dc.identifier.urihttps://hdl.handle.net/10481/105872
dc.description.abstractThe increasing demand for sustainable materials has led to the development of biodegradable polymer composites. This study examines polybutylene succinate (PBS) hybrid eco-friendly composites reinforced with canabrava fiber (CANA), lignin (LIG), and sepiolite (SEP), with epoxidized soybean oil (ESB) as a compatibilizer and plasticizer, for potential applications in agricultural packaging, especially trays for plant seedling production and/or plant pots, whose recycling process is difficult due to the logistical gap, where controlled degradation and eco-friendliness can be beneficial. Mechanical analysis reveals a significant increase in stiffness, with Young's modulus rising by up to 309%, while impact resistance decreases due to increased brittleness. The incorporation of SEP enhances flexural modulus and strength, while LIG contributes to improved melt flow properties. ESB improves the rheological behavior, although it fails to increase elongation and ductility. Thermal analysis indicates that SEP increases the crystallization temperature from 77.1°C (PBS) to 83.6°C (2PBS-08), promoting improved crystallinity. Fourier transform infrared (FTIR) spectroscopy confirms strong interactions between PBS and SEP, suggesting effective filler dispersion. Biodegradation tests show a 9.0% mass loss for the composite (2PBS-09) after 90days, compared to 4.8% for neat PBS, highlighting enhanced degradation. Scanning electron microscopy (SEM) confirms good fiber–matrix adhesion and uniform filler dispersion. These results demonstrate the potential of PBS hybrid composites as a sustainable alternative to conventional plastics, offering a balance between cost, mechanical performance, biodegradability, and structural integrity.es_ES
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades (PID2022-137603013-100)es_ES
dc.description.sponsorshipEMERGIA Program Project (2022/00001046)es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBiodegradablees_ES
dc.subjectBioengineering es_ES
dc.subjectBiomaterialses_ES
dc.subjectBiopolymers and renewable polymerses_ES
dc.subjectPackaging es_ES
dc.titleAdvanced Biodegradable Materials: The Development of PBS Hybrid Composites Reinforced With Natural Fibers, Lignin, and Sepiolite for Sustainable Applicationses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1002/app.57543
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional