Mostrar el registro sencillo del ítem

dc.contributor.authorAbratenko, P.
dc.contributor.authorMicroboone Collaboration, /
dc.contributor.authorGarcía Gámez, Diego 
dc.date.accessioned2025-07-24T12:17:53Z
dc.date.available2025-07-24T12:17:53Z
dc.date.issued2025-05-15
dc.identifier.citationMicroBooNE Collaboration. (2025). Data-driven model validation for neutrino-nucleus cross section measurements. Physical Review. D. (2016), 111(9). https://doi.org/10.1103/physrevd.111.092010es_ES
dc.identifier.urihttps://hdl.handle.net/10481/105637
dc.description.abstractNeutrino-nucleus cross section measurements are needed to improve interaction modeling to meet the precision needs of neutrino experiments in efforts to measure oscillation parameters and search for physics beyond the Standard Model. We review the difficulties associated with modeling neutrino-nucleus interactions that lead to a dependence on event generators in oscillation analyses and cross section measurements alike. We then describe data-driven model validation techniques intended to address this model dependence. The method relies on utilizing various goodness-of-fit tests and the correlations between different observables and channels to probe the model for defects in the phase space relevant for the desired analysis. These techniques shed light on relevant mismodeling, allowing it to be detected before it begins to bias the cross section results. We compare more commonly used model validation methods which directly validate the model against alternative ones to these data-driven techniques and show their efficacy with fake data studies. These studies demonstrate that employing data-driven model validation in cross section measurements represents a reliable strategy to produce robust results that will stimulate the desired improvements to interaction modeling.es_ES
dc.description.sponsorshipFermi Research Alliance, LLC (FRA) - (Contract No. DE-AC02-07CH11359)es_ES
dc.description.sponsorshipRoyal Society (United Kingdom)es_ES
dc.description.sponsorshipUK Research and Innovation (UKRI) Future Leaders Fellowshipes_ES
dc.description.sponsorshipNSF AI - Institute for Artificial Intelligence and Fundamental Interactionses_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleData-driven model validation for neutrino-nucleus cross section measurementses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1103/physrevd.111.092010
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional