Afficher la notice abrégée

dc.contributor.authorAlbano, Giuseppina
dc.contributor.authorGiorno, Virginia
dc.contributor.authorPérez Romero, Gema
dc.contributor.authorTorres Ruiz, Francisco De Asís 
dc.date.accessioned2025-07-23T10:51:32Z
dc.date.available2025-07-23T10:51:32Z
dc.date.issued2025-06-16
dc.identifier.citationAlbano, G., Giorno, V., Pérez-Romero, G., & Torres-Ruiz, F. de A. (2025). Inference on a stochastic SIR model including growth curves. Computational Statistics & Data Analysis, 212(108231), 108231. https://doi.org/10.1016/j.csda.2025.108231es_ES
dc.identifier.urihttps://hdl.handle.net/10481/105591
dc.description.abstractA Susceptible-Infected-Removed stochastic model is presented, in which the stochasticity is introduced through two independent Brownian motions in the dynamics of the Susceptible and Infected populations. To account for the natural evolution of the Susceptible population, a growth function is considered in which size is influenced by the birth and death of individuals. Inference for such a model is addressed by means of a Quasi Maximum Likelihood Estimation (QMLE) method. The resulting nonlinear system can be numerically solved by iterative procedures. A technique to obtain the initial solutions usually required by such methods is also provided. Finally, simulation studies are performed for three well-known growth functions, namely Gompertz, Logistic and Bertalanffy curves. The performance of the initial estimates of the involved parameters is assessed, and the goodness of the proposed methodology is evaluated.es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033 ( PID2020-1187879GB-100, CEX2020-001105-M)es_ES
dc.description.sponsorshipEuropean Union – Next Generation EU (MUR-PRIN 2022, project 2022XZSAFN; MUR-PRIN 2022 PNRR, project P2022XSF5H)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectEuler-Maruyama schemees_ES
dc.subjectGrowth curveses_ES
dc.subjectInferencees_ES
dc.subjectNewton methodes_ES
dc.subjectQuasi maximum likelihood estimationes_ES
dc.titleInference on a stochastic SIR model including growth curveses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.csda.2025.108231
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional