Mostrar el registro sencillo del ítem
Solitons of the mean curvature flow in S2 × R
dc.contributor.author | López Camino, Rafael | |
dc.contributor.author | Munteanu, Marian Ioan | |
dc.date.accessioned | 2025-07-22T07:37:55Z | |
dc.date.available | 2025-07-22T07:37:55Z | |
dc.date.issued | 2025-03-25 | |
dc.identifier.citation | López, R., & Munteanu, M. I. (2025). Solitons of the mean curvature flow in S2×R. Differential Geometry and Its Applications, 99(102243), 102243. https://doi.org/10.1016/j.difgeo.2025.102243 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/105477 | |
dc.description.abstract | A soliton of the mean curvature flow in the product space S2 ×R is a surface whose mean curvature H satisfies the equation H = {N,X}, where N is the unit normal of the surface and X is a Killing vector field of S2 × R. In this paper we consider the cases that X is the vector field tangent to the second factor and the vector field associated to rotations about an axis of S2, respectively. We give a classification of the solitons with respect to these vector fields assuming that the surface is invariant under a one-parameter group of vertical translations or rotations of S2. | es_ES |
dc.description.sponsorship | MICINN/FEDER grant no. PID2023-150727NB-I00 | es_ES |
dc.description.sponsorship | MCINN y “María de Maeztu” Excellence Unit IMAG (CEX2020-001105-M) | es_ES |
dc.description.sponsorship | RDI excellence funding projects, Contract no. 11PFE/30.12.202 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Solitons | es_ES |
dc.subject | Mean curvature flow | es_ES |
dc.subject | S2 × R | es_ES |
dc.subject | One-parameter group | es_ES |
dc.title | Solitons of the mean curvature flow in S2 × R | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1016/j.difgeo.2025.102243 | |
dc.type.hasVersion | VoR | es_ES |