| dc.contributor.author | López Camino, Rafael | |
| dc.date.accessioned | 2025-07-17T07:57:30Z | |
| dc.date.available | 2025-07-17T07:57:30Z | |
| dc.date.issued | 2025-07 | |
| dc.identifier.citation | López, R. A connection between minimal surfaces and the two-dimensional analogues of a problem of Euler. Annali di Matematica (2025). https://doi.org/10.1007/s10231-025-01593-w | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10481/105398 | |
| dc.description | The author has been partially supported by MINECO/MICINN/FEDER grant no. PID2023-150727NB-I00, and by the “María de Maeztu” Excellence Unit IMAG, reference CEX2020-001105-M, funded by MCINN/AEI/10.13039/501100011033/CEX2020-001105-M. Universidad de Granada/CBUA | es_ES |
| dc.description.abstract | If α ∈ R, an α-stationary surface in Euclidean space is a surface whose mean curvature
H satisfies H ( p) = α| p| −2〈ν, p〉, p ∈ . These surfaces generalize in dimension two a
classical family of curves studied by Euler which are critical points of the moment of inertia
of planar curves. In this paper we establish, via inversions, a one-to-one correspondence
between α-stationary surfaces and −(α + 4)-stationary surfaces. In particular, there is a
correspondence between −4-stationary surfaces and minimal surfaces. Using this duality we
give some results of uniqueness of −4-stationary surfaces and we solve the Börling problem. | es_ES |
| dc.description.sponsorship | MINECO/MICINN/FEDER PID2023-150727NB-I00 | es_ES |
| dc.description.sponsorship | MCINN/AEI/10.13039/501100011033/CEX2020-001105-M CEX2020-001105-M | es_ES |
| dc.description.sponsorship | Universidad de Granada/CBUA | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | Springer Nature | es_ES |
| dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/ | es_ES |
| dc.subject | Euler’s problem | es_ES |
| dc.subject | Minimal surfaces | es_ES |
| dc.subject | Inversions | es_ES |
| dc.subject | Tangency principle | es_ES |
| dc.title | A connection between minimal surfaces and the two-dimensional analogues of a problem of Euler | es_ES |
| dc.type | journal article | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.identifier.doi | 10.1007/s10231-025-01593-w | |
| dc.type.hasVersion | VoR | es_ES |