Mostrar el registro sencillo del ítem

dc.contributor.authorSalvi, Massimo
dc.contributor.authorLoh, Hui Wen
dc.contributor.authorSeoni, Silvia
dc.contributor.authorDatta Barua, Prabal
dc.contributor.authorGarcía López, Salvador 
dc.contributor.authorMolinari, Filippo
dc.contributor.authorRajendra Acharya, U.
dc.date.accessioned2025-07-09T11:06:36Z
dc.date.available2025-07-09T11:06:36Z
dc.date.issued2023-11-15
dc.identifier.citationSalvi, M., Loh, H. W., Seoni, S., Barua, P. D., García, S., Molinari, F., & Acharya, U. R. (2024). Multi-modality approaches for medical support systems: A systematic review of the last decade. An International Journal on Information Fusion, 103(102134), 102134. https://doi.org/10.1016/j.inffus.2023.102134es_ES
dc.identifier.urihttps://hdl.handle.net/10481/105150
dc.description.abstractHealthcare traditionally relies on single-modality approaches, which limit the information available for medical decisions. However, advancements in technology and the availability of diverse data sources have made it feasible to integrate multiple modalities and gain a more comprehensive understanding of patients' conditions. Multi-modality approaches involve fusing and analyzing various data types, including medical images, biosignals, clinical records, and other relevant sources. This systematic review provides a comprehensive exploration of the multi-modality approaches in healthcare, with a specific focus on disease diagnosis and prognosis. The adoption of multi-modality approaches in healthcare is crucial for personalized medicine, as it enables a comprehensive profile of each patient, considering their genetic makeup, imaging characteristics, clinical history, and other relevant factors. The review also discusses the technical challenges associated with fusing heterogeneous multimodal data and highlights the emergence of deep learning approaches as a powerful paradigm for multimodal data integration.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución-NoComercial 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectData fusiones_ES
dc.subjectDeep learninges_ES
dc.subjectMulti-modalityes_ES
dc.subjectFusion methodses_ES
dc.subjectDiagnosis and prognosises_ES
dc.subjectHealthcarees_ES
dc.titleMulti-modality approaches for medical support systems: A systematic review of the last decadees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.inffus.2023.102134
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial 4.0 Internacional