Afficher la notice abrégée

dc.contributor.authorCarthy, Joe
dc.contributor.authorRey Devesa, Pablo
dc.contributor.authorTitos Luzón, Manuel Marcelino 
dc.contributor.authorBenítez Ortúzar, María Del Carmen 
dc.date.accessioned2025-07-01T07:19:45Z
dc.date.available2025-07-01T07:19:45Z
dc.date.issued2025-04-28
dc.identifier.citationJ. Carthy, P. Rey-Devesa, M. Titos and C. Benitez, "Volcano-Seismic Event Detection and Clustering," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 18, pp. 11276-11289, 2025, [DOI: 10.1109/JSTARS.2025.3559412]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/104990
dc.descriptionThis work was supported in part by European Union’s Horizon 2020 research and innovation programme, project IMPROVE under Grant 858092, in part by MCIN/AEI/10.13039/501100011033 and FEDER (EU), project LEARNING; under Grant PID2022-143083NB-I00es_ES
dc.description.abstractThis study looks into unsupervised and supervised methods for detecting events in volcano-seismic time series data, segmenting the data, and clustering the segments where there is activity. This two-stage pipeline allows for the analysis of the signals without requiring the type of event to be identified at the offset and reduces the manpower required to analyze new data. Due to the resource intensive labeling process required to understand volcano-seismic signals it is important to explore unsupervised analysis techniques in this domain. The unsupervised methods are evaluated using supervised metrics including completeness, homogeneity, and V-measure scores. Alongside the unsupervised investigation, the use of intersection-based metrics that offer a clearer performance evaluation of the event segmentation task is motivated and the potential of gradient boosted trees for event detection is tested.es_ES
dc.description.sponsorshipEuropean Union’s Horizon 2020 (Grant 858092)es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033 y FEDER (EU), (Grant PID2022-143083NB-I00)es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectClassification es_ES
dc.subjectclusteringes_ES
dc.subjectDeep learninges_ES
dc.subjectdimension reductiones_ES
dc.subjectGradient boosted treeses_ES
dc.titleVolcano-Seismic Event Detection and Clusteringes_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/858092es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/JSTARS.2025.3559412
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional