Mostrar el registro sencillo del ítem

dc.contributor.authorAl-Qudah, Dana A.
dc.contributor.authorAl-Zoubi, Ala’ M.
dc.contributor.authorCristea, Alexandra I.
dc.contributor.authorMerelo Guervos, Juan Julián 
dc.contributor.authorCastillo Valdivieso, Pedro Ángel 
dc.contributor.authorFaris, Hossam
dc.date.accessioned2025-06-30T07:45:57Z
dc.date.available2025-06-30T07:45:57Z
dc.date.issued2025-01-09
dc.identifier.citationAl-Qudah DA, Al-Zoubi AM, Cristea AI, Merelo-Guervós JJ, Castillo PA, Faris H. 2025. Prediction of sentiment polarity in restaurant reviews using an ordinal regression approach based on evolutionary XGBoost. PeerJ Comput. Sci. 11:e2370 [DOI: 10.7717/peerj-cs.2370]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/104926
dc.descriptionThis work is supported by the Ministerio Español de Ciencia e Innovación (formerly known as Ministerio español de Economıa y Competitividad) under project Al-Qudah et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2370 24/29 PID2020-115570GB-C22 MCIN/AEI/10.13039/501100011033 and PID2023-147409NBC21 MICIU/AEI/10.13039/501100011033 and the Deanship of Scientific Research, The University of Jordanes_ES
dc.description.abstractAs the business world shifts to the web and tremendous amounts of data become available on multilingual mobile applications, new business and research challenges and opportunities have been explored. This research aims to intensify the usage of data analytics, machine learning, and sentiment analysis of textual data to classify customers’ reviews, feedback, and ratings of businesses in Jordan’s food and restaurant industry. The main methods used in this research were sentiment polarity (to address the challenges posed by businesses to automatically apply text analysis) and bio-metric techniques (to systematically identify users’ emotional states, so reviews can be thoroughly understood). The research was extended to deal with reviews in Arabic, dialectic Arabic, and English, with the main focus on the Arabic language, as the application examined (Talabat) is based in Jordan. Arabic and English reviews were collected from the application, and a new model was proposed to sentimentally analyze reviews. The proposed model has four main stages: data collection, data preparation, model building, and model evaluation. The main purpose of this research is to study the problem expressed above using a model of ordinal regression to overcome issues related to misclassification. Additionally, an automatic multi-language prediction approach for online restaurant reviews was proposed by combining the eXtreme gradient boosting (XGBoost) and particle swarm optimization (PSO) techniques for the ordinal regression of these reviews. The proposed PSO-XGB algorithm showed superior results when compared to support vector machine (SVM) and other optimization methods in terms of root mean square error (RMSE) for the English and Arabic datasets. Specifically, for the Arabic dataset, PSO-XGB achieved an RMSE value of 0.7722, whereas PSO-SVM achieved an RSME value of 0.9988.es_ES
dc.description.sponsorshipMinisterio Español de Ciencia e Innovación (MCIN/AEI/10.13039/501100011033)es_ES
dc.language.isoenges_ES
dc.publisherPeerJ, Ltd.es_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectOrdinal regressiones_ES
dc.subjectSentiment polarityes_ES
dc.subjectEvolutionaryes_ES
dc.subjectParticle swarm optimisationes_ES
dc.subjectXGBoostes_ES
dc.titlePrediction of sentiment polarity in restaurant reviews using an ordinal regression approach based on evolutionary XGBoostes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.7717/peerj-cs.2370
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional