• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Maintenance costs and makespan minimization for assembly permutation flow shop scheduling by considering preventive and corrective maintenance

[PDF] zhang21.pdf (3.787Mb)
Identificadores
URI: https://hdl.handle.net/10481/104821
DOI: 10.1016/j.jmsy.2021.03.020
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Zhang, Zikai; Tang, Qiuhua; Chica Serrano, Manuel
Editorial
Elsevier
Materia
Assembly permutation
 
Bi-objective flow shop
 
Preventive maintenance
 
Fecha
2021-04-13
Referencia bibliográfica
Zhang, Zikai et al. Journal of Manufacturing Systems 59 549-564. https://doi.org/10.1016/j.jmsy.2021.03.020
Patrocinador
National Natural Science Foundation of China (51875421); Spanish Ministry of Science; Andalusian Government; National Agency for Research Funding AEI; ERDF (PGC2018-101216-B-I00), (P18-TP-4475), (RYC-2016-19800)
Resumen
The joint optimization of production scheduling and maintenance planning has a significant influence on production continuity and machine reliability. However, limited research considers preventive maintenance (PM) and corrective maintenance (CM) in assembly permutation flow shop scheduling. This paper addresses the bi-objective joint optimization of both PM and CM costs in assembly permutation flow shop scheduling. We also propose a new mixed integer linear programming model for the minimization of the makespan and maintenance costs. Two lemmas are inferred to relax the expected number of failures and CM cost to make the model linear. A restarted iterated Pareto greedy (RIPG) algorithm is applied to solve the problem by including a new evaluation of the solutions, based on a PM strategy. The RIPG algorithm makes use of novel bi-objective-oriented greedy and referenced local search phases to find non-dominated solutions. Three types of experiments are conducted to evaluate the proposed MILP model and the performance of the RIPG algorithm. In the first experiment, the MILP model is solved with an epsilon-constraint method, showing the effectiveness of the MILP model in small-scale instances. In the remaining two experiments, the RIPG algorithm shows its superiority for all the instances with respect to four well-known multi-objective metaheuristics.
Colecciones
  • DCCIA - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias