• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A multiobjective model and evolutionary algorithms for robust time and space assembly line balancing under uncertain demand

[PDF] 1-s2.0-S0305048315000766-main.pdf (1.426Mb)
Identificadores
URI: https://hdl.handle.net/10481/104799
DOI: 10.1016/j.omega.2015.04.003
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Chica Serrano, Manuel; Bautista, Joaquín; Cordón García, Óscar; Damas Arroyo, Sergio
Editorial
Elsevier
Materia
Robust optimization
 
Assembly line balancing
 
Multiobjective evolutionary algorithms
 
Fecha
2016-01
Referencia bibliográfica
Chica Serrano, Manuel et al. Omega 58, 55-68, 2016. https://doi.org/10.1016/j.omega.2015.04.003
Patrocinador
Principality of Asturias CT14-05-2-04; Spanish Ministerio de Economía y Competitividad (TIN2012-38525-C02-01, TIN2012-38525-C02-02, TIN2014-57497), (DPI2010-16759); EDRF
Resumen
Changes in demand when manufacturing different products require an optimization model that includes robustness in its definition and methods to deal with it. In this work we propose the r-TSALBP, a multiobjective model for assembly line balancing to search for the most robust line configurations when demand changes. The robust model definition considers a set of demand scenarios and presents temporal and spatial overloads of the stations in the assembly line of the products to be assembled. We present two multiobjective evolutionary algorithms to deal with one of the r-TSALBP variants. The first algorithm uses an additional objective to evaluate the robustness of the solutions. The second algorithm employs a novel adaptive method to evolve separate populations of robust and non-robust solutions during the search. Results show the improvements of using robustness information during the search and the outstanding behavior of the adaptive evolutionary algorithm for solving the problem. Finally, we analyze the managerial impacts of considering the r-TSALBP model for the different organization departments by exploiting the values of the robustness metrics.
Colecciones
  • DCCIA - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias