Afficher la notice abrégée

dc.contributor.authorLippeveld, Maxim
dc.contributor.authorPeralta Cámara, Daniel
dc.contributor.authorVardi, Assaf
dc.contributor.authorVincent, Flora
dc.contributor.authorSaeys, Yvan
dc.date.accessioned2025-06-16T10:47:57Z
dc.date.available2025-06-16T10:47:57Z
dc.date.issued2025-06-16
dc.identifier.citationLippeveld, M., Peralta, D., Vardi, A., Vincent, F. & Saeys, Y. Morphological Profiling of Imaging Flow Cytometry Data Uncovers Heterogeneity in Infected Gephyrocapsa huxleyi Cultures. Cytometry Part A. https://doi.org/10.1002/cyto.a.24944es_ES
dc.identifier.urihttps://hdl.handle.net/10481/104705
dc.descriptionThis work was supported by Fonds Wetenschappelijk Onderzoek, 1SB9421N. European Regional Development Fund, C-ING-250-UGR23. Flanders AI Research (FAIR) Program, 174B09119.es_ES
dc.description.abstractPhytoplankton, such as the coccolitophore Gephyrocapsa huxleyi (G. huxleyi), has a major ecological impact through photosynthesis—the production of oxygen and organic material. A significant threat to G. huxleyi populations is viral infection with the specific Gephyrocapsa huxleyi virus (GhV). Previous research has provided important insight into the infection cycle of G. huxleyi. However, research including quantitative morphological information on infected cells is lacking, potentially masking heterogeneity in the infection cycle. In this study, we propose a machine learning (ML) pipeline to incorporate morphological profiling into the analysis of spatially resolved single-molecule mRNA fluorescence in situ hybridization (smFISH)—imaging flow cytometry (IFC) data acquired on infected G. huxleyi populations. First, we propose to simplify infection monitoring by using a classification model that does not rely on mRNA staining. Second, we propose an exploratory data analysis pipeline to disentangle two modes of cell death in infected cultures and a subpopulation of healthy cells that potentially will not die from infection, but from programmed cell death (PCD). Overall, we show that morphological profiling of smFISH–IFC data is highly suited for studying microbial interactions in phytoplankton populations.es_ES
dc.description.sponsorshipFonds Wetenschappelijk Onderzoek 1SB9421Nes_ES
dc.description.sponsorshipEuropean Regional Development Fund C-ING-250-UGR23es_ES
dc.description.sponsorshipFlanders AI Research (FAIR) 174B09119es_ES
dc.language.isoenges_ES
dc.publisherWileyes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleMorphological Profiling of Imaging Flow CytometryData Uncovers Heterogeneity in Infected Gephyrocapsahuxleyi Cultureses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1002/cyto.a.24944
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional