Mostrar el registro sencillo del ítem

dc.contributor.authorFernández Basso, Carlos Jesús 
dc.contributor.authorDíaz-Jiménez, David
dc.contributor.authorLópez, Jose L.
dc.contributor.authorEspinilla, Macarena
dc.date.accessioned2025-06-13T10:43:45Z
dc.date.available2025-06-13T10:43:45Z
dc.date.issued2025-05-20
dc.identifier.citationFernandez-Basso, C., Díaz-Jimenez, D., López, J. L., & Espinilla, M. (2025). Fuzzy processing applied to improve multimodal sensor data fusion to discover frequent behavioural patterns for smart healthcare. Information Fusion, 103307. https://doi.org/10.1016/j.inffus.2025.103307es_ES
dc.identifier.urihttps://hdl.handle.net/10481/104644
dc.descriptionThis result has been partially supported by grant PID2021- 123960OB-I00, PDC2023-145863-I00 and grant PID2021-127275OB-I00 funded by MICIU/AEI, Spain/10.13039/501100011033 and by “ERDF A way of making Europe”, grant PDC2023-145863-I00 funded by MICIU/AEI, Spain/ 10.13039/501100011033 and by “European Union NextGenerationEU/PRTR”, and grant M.2 PDC_000756 funded by Consejería de Universidad, Investigación e Innovación, Spain and by ERDF Andalusia Program 2021–2027. Finally, the research reported in this paper is also funded by the European Union (BAG-INTEL project, grant agreement no. 101121309). Funding for open access charge: Universidad de Granada / CBUA.es_ES
dc.description.abstractThe extraction and utilization of latent information from sensor data is gaining increasing prominence due to its potential for transforming decision-making processes across various sectors. Data mining techniques provide robust tools for analyzing large-scale data generated by advanced network management systems, offering actionable insights that drive operational efficiency and strategic improvements. However, the sheer volume of sensor data, combined with challenges related to real-world sensor deployment and user interaction, necessitates the development of advanced data fusion and processing frameworks. This paper presents an innovative automatic fusion and fuzzification methodology designed to integrate multi-source sensor data into coherent, high-quality intelligent outputs. By applying fuzzy logic, the proposed system enhances the interpretability and interoperability of complex sensor datasets. The approach has been validated in a real-world scenario within sensorized homes of Type II diabetic patients in Cabra (Córdoba, Spain), where it aids healthcare professionals in monitoring and optimizing patient routines. Experimental results demonstrate the system’s effectiveness in identifying and analyzing behavioral patterns, highlighting its potential to improve patient care through advanced sensor data fusion techniques.es_ES
dc.description.sponsorship“ERDF A way of making Europe”es_ES
dc.description.sponsorship“European Union NextGenerationEU/PRTR”es_ES
dc.description.sponsorshipConsejería de Universidad, Investigación e Innovación, Spain M.2 PDC_000756es_ES
dc.description.sponsorshipERDF Andalusia Program 2021–2027es_ES
dc.description.sponsorshipEuropean Union 101121309es_ES
dc.description.sponsorshipUniversidad de Granada / CBUAes_ES
dc.description.sponsorshipMICIU/AEI, Spain/10.13039/501100011033 PID2021- 123960OB-I00, PDC2023-145863-I00, PID2021-127275OB-I00es_ES
dc.language.isoenges_ES
dc.publisherElservieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectData fusiones_ES
dc.subjectSensor dataes_ES
dc.subjectSensor fuzzificationes_ES
dc.subjectSmart healthcarees_ES
dc.titleFuzzy processing applied to improve multimodal sensor data fusion to discover frequent behavioral patterns for smart healthcarees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.inffus.2025.103307
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional