Mostrar el registro sencillo del ítem

dc.contributor.authorPaños-Basterra, Juan
dc.contributor.authorRivas, Jose M
dc.contributor.authorMorcillo-Jimenez, Roberto
dc.contributor.authorFernández Basso, Carlos Jesús 
dc.contributor.authorRuiz Jiménez, María Dolores 
dc.contributor.authorMartín Bautista, María José 
dc.date.accessioned2025-06-13T10:24:25Z
dc.date.available2025-06-13T10:24:25Z
dc.date.issued2025
dc.identifier.citationPaños-Basterra, J., Rivas, J. M., Morcillo-Jimenez, R., Fernandez-Basso, C., Ruiz, M. D., & Martin-Bautista, M. J. (2025). Comparative Analysis of Federated Association Rules in a Simulated Environment for Medical Applications. IEEE Journal of Biomedical and Health Informatics.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/104640
dc.description.abstractThis article examines some of the most relevant algorithms for association rule mining in a medical context, within the framework of unsupervised Federated Learning (FL) in a simulated environment. Unlike traditional algorithms that rely on centralized databases, FL operates on decentralized devices, prioritizing data privacy and algorithm efficiency. This emerging paradigm in machine learning and data mining aims to preserve privacy in edge networks. In this study, the privacy of subject data is ensured as the algorithms operate and collaborate between nodes, sharing only the results of their computations while keeping raw data encapsulated and encrypted. The work evaluates key aspects such as execution time and encryption/decryption efficiency in edge networks. This analysis is motivated by the increasing demand for data analysis in the healthcare sector, where maintaining data privacy is critical due to the proliferation of data privacy regulations.es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectItemsetses_ES
dc.subjectMachine learning algorithmses_ES
dc.subjectBioinformaticses_ES
dc.subjectProposalses_ES
dc.subjectFederated learninges_ES
dc.subjectVocteorses_ES
dc.subjectMEdical serviceses_ES
dc.subjectData privacyes_ES
dc.titleComparative Analysis of Federated Association Rules in a Simulated Environment for Medical Applicationses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/JBHI.2025.3564546
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License