Mostrar el registro sencillo del ítem

dc.contributor.authorRivas, Jose M.
dc.contributor.authorFernández Basso, Carlos Jesús 
dc.contributor.authorMorcillo-Jiménez, Roberto
dc.contributor.authorPaños-Basterra, Juan
dc.contributor.authorRuiz Jiménez, María Dolores 
dc.contributor.authorMartín Bautista, María José 
dc.date.accessioned2025-06-13T10:19:19Z
dc.date.available2025-06-13T10:19:19Z
dc.date.issued2024-11-20
dc.identifier.citationRivas, J. M., Fernandez-Basso, C., Morcillo-Jimenez, R., Paños-Basterra, J., Ruiz, M. D., & Martin-Bautista, M. J. (2025). Simulafed: an enhanced federated simulated environment for privacy and security in health. Computing (2025) 107:3. https://doi.org/10.1007/s00607-024-01364-0es_ES
dc.identifier.urihttps://hdl.handle.net/10481/104637
dc.descriptionThe research reported in this paper was partially supported by Grant PID2021-123960OB-I00 funded by MCIU/AEI/10.13039/501100011033 and by ERDF/EU (FederaMed project), and from DesinfoScan project: Grant TED2021-129402B-C21 funded by MCIU/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR.es_ES
dc.description.abstractFederated learning enables collaborative data analysis without the need to share sensitive information among participants, addressing privacy concerns in domains such as healthcare and finance. However, current federated simulation environments face challenges like limited flexibility in experiment configuration and difficulties ensuring data privacy. We present SimulaFed, a federated simulation environment based on a custom architecture that offers a personalised and configurable approach to data analysis using the Docker platform. SimulaFed allows researchers to create experiments tailored to their specific needs, ensures communication privacy, and incorporates various security and governance techniques. We demonstrate the effectiveness of SimulaFed through a real-world medical case, implementing and comparing two privacy-preserving federated algorithms for association rule mining: Tassa’s and Chahar’s algorithms. Our experiments show that while Tassa’s algorithm performs better in environments with a moderate number of participants due to lower computational and communication overhead, Chahar’s algorithm, though offering robust security through homomorphic encryption, suffers from efficiency limitations owing to high encryption and decryption costs. These findings provide valuable insights into the performance and limitations of existing algorithms, highlighting the need for more efficient methods in federated settings.es_ES
dc.description.sponsorshipMCIU/AEI/10.13039/501100011033 PID2021-123960OB-I00, TED2021-129402B-C21es_ES
dc.description.sponsorshipERDF/EU (FederaMed project)es_ES
dc.description.sponsorshipEuropean Union NextGenerationEU/PRTRes_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFederated learninges_ES
dc.subjectSimulation environmentes_ES
dc.subjectData privacyes_ES
dc.subjectScalable platformes_ES
dc.subjectApplication in healthcare dataes_ES
dc.titleSimulafed: an enhanced federated simulated environment for privacy and security in healthes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s00607-024-01364-0
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional