Mostrar el registro sencillo del ítem
Simulafed: an enhanced federated simulated environment for privacy and security in health
dc.contributor.author | Rivas, Jose M. | |
dc.contributor.author | Fernández Basso, Carlos Jesús | |
dc.contributor.author | Morcillo-Jiménez, Roberto | |
dc.contributor.author | Paños-Basterra, Juan | |
dc.contributor.author | Ruiz Jiménez, María Dolores | |
dc.contributor.author | Martín Bautista, María José | |
dc.date.accessioned | 2025-06-13T10:19:19Z | |
dc.date.available | 2025-06-13T10:19:19Z | |
dc.date.issued | 2024-11-20 | |
dc.identifier.citation | Rivas, J. M., Fernandez-Basso, C., Morcillo-Jimenez, R., Paños-Basterra, J., Ruiz, M. D., & Martin-Bautista, M. J. (2025). Simulafed: an enhanced federated simulated environment for privacy and security in health. Computing (2025) 107:3. https://doi.org/10.1007/s00607-024-01364-0 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/104637 | |
dc.description | The research reported in this paper was partially supported by Grant PID2021-123960OB-I00 funded by MCIU/AEI/10.13039/501100011033 and by ERDF/EU (FederaMed project), and from DesinfoScan project: Grant TED2021-129402B-C21 funded by MCIU/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR. | es_ES |
dc.description.abstract | Federated learning enables collaborative data analysis without the need to share sensitive information among participants, addressing privacy concerns in domains such as healthcare and finance. However, current federated simulation environments face challenges like limited flexibility in experiment configuration and difficulties ensuring data privacy. We present SimulaFed, a federated simulation environment based on a custom architecture that offers a personalised and configurable approach to data analysis using the Docker platform. SimulaFed allows researchers to create experiments tailored to their specific needs, ensures communication privacy, and incorporates various security and governance techniques. We demonstrate the effectiveness of SimulaFed through a real-world medical case, implementing and comparing two privacy-preserving federated algorithms for association rule mining: Tassa’s and Chahar’s algorithms. Our experiments show that while Tassa’s algorithm performs better in environments with a moderate number of participants due to lower computational and communication overhead, Chahar’s algorithm, though offering robust security through homomorphic encryption, suffers from efficiency limitations owing to high encryption and decryption costs. These findings provide valuable insights into the performance and limitations of existing algorithms, highlighting the need for more efficient methods in federated settings. | es_ES |
dc.description.sponsorship | MCIU/AEI/10.13039/501100011033 PID2021-123960OB-I00, TED2021-129402B-C21 | es_ES |
dc.description.sponsorship | ERDF/EU (FederaMed project) | es_ES |
dc.description.sponsorship | European Union NextGenerationEU/PRTR | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer Nature | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Federated learning | es_ES |
dc.subject | Simulation environment | es_ES |
dc.subject | Data privacy | es_ES |
dc.subject | Scalable platform | es_ES |
dc.subject | Application in healthcare data | es_ES |
dc.title | Simulafed: an enhanced federated simulated environment for privacy and security in health | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1007/s00607-024-01364-0 | |
dc.type.hasVersion | VoR | es_ES |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
OpenAIRE (Open Access Infrastructure for Research in Europe)
Publicaciones financiadas por Framework Programme 7, Horizonte 2020, Horizonte Europa... del European Research Council de la Unión Europea en el marco del Proyecto OpenAIRE que promueve el acceso abierto a Europa.