Mostrar el registro sencillo del ítem

dc.contributor.authorMorales Garzón, Andrea
dc.contributor.authorMartín Bautista, María José 
dc.contributor.authorGutiérrez Batista, Karel 
dc.date.accessioned2025-06-13T08:58:08Z
dc.date.available2025-06-13T08:58:08Z
dc.date.issued2023-11-15
dc.identifier.citationMorales-Garzón, A., Gutiérrez-Batista, K., & Martin-Bautista, M. J. (2024). Link prediction in food heterogeneous graphs for personalised recipe recommendation based on user interactions and dietary restrictions. Computing, 106(7), 2133-2155.es_ES
dc.identifier.urihttps://hdl.handle.net/10481/104628
dc.description.abstractRecipe data and user interactions and preferences have been widely studied in food computing, especially for the recipe recommendation task. One part of these works seeks to introduce healthy patterns while considering user preferences, known as healthy-aware recommender systems. The major challenge here is to build systems capable of learning the complex structure of recipe data since they involve heterogeneous resources. Internet-sourced recipe collections may also have a representative amount of recipes that do not follow healthy guidelines, thus inhibiting the performance of health-aware recommender systems. We propose a new method for recipe recommendation based on a link prediction algorithm that considers recipes, their healthy features, and users. We train the model twice, once with the whole dataset and once with recipes following healthy guidelines. We follow three strategies for representing recipe data regarding healthy features. In general, training the model in recipe data that follows healthy guidelines achieves better results, especially when representing recipes with numeric nutrition recipe values.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectLink predictiones_ES
dc.subjectHeterogeneous graphes_ES
dc.subjectFood computinges_ES
dc.subjectGraph neural networkes_ES
dc.titlez-Batista, K., & Martin-Bautista, M. J. (2024). Link prediction in food heterogeneous graphs for personalised recipe recommendation based on user interactions and dietary restrictionses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional