Mostrar el registro sencillo del ítem

dc.contributor.authorGutiérrez Batista, Karel 
dc.contributor.authorMartín Bautista, María José 
dc.contributor.authorMorcillo Jiménez, Roberto
dc.contributor.authorMorales Garzón, Andrea
dc.contributor.authorRojas Carvajal, Ana María
dc.date.accessioned2025-06-02T11:54:51Z
dc.date.available2025-06-02T11:54:51Z
dc.date.issued2025-05-12
dc.identifier.citationMorales-Garzón, A., Carvajal, A. M. R., Morcillo-Jimenez, R., Martin-Bautista, M. J., & Gutiérrez-Batista, K. (2025). Personalised healthy food text recommendations through fuzzy linguistic variables: A generative AI-based approach. Applied Soft Computing, 113234. https://doi.org/10.1016/j.asoc.2025.113234es_ES
dc.identifier.urihttps://hdl.handle.net/10481/104425
dc.descriptionThis research was partially supported by the Grant PID2021-123960OB-I00 funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe. It was also funded by “Consejería de Transformación Económica, Industria, Conocimiento y Universidades de la Junta de Andalucía” through a pre-doctoral fellowship program (Grant Ref. PREDOC_00298). In addition, this research has been partially supported by the project CITIC-2024-06, funded by the Research Center for Information and Communication technologies of the University of Granada. Funding for open access charge: Universidad de Granada/CBUA.es_ES
dc.description.abstractNutrition and healthy eating habits are fundamental for the global population. Nowadays, there is an increasing tendency to consume less healthy recipes and a low general knowledge of nutrition. In these terms, generative AI arises as a potential tool for health-aware food recommendations, especially when improving communication with the user. This study presents a pipeline to enrich prompts with fuzzy modelling to increase the quality of textual recommendations. We apply our pipeline to generate a personalised frequency of food consumption, considering both nutritional and individual profiles. This is an essential task for increasing the health-conscious recommendation systems. We conducted extensive experimentation across different roles and prompt strategies. We evaluated the quality of the text and the nutritional rigour of the text responses. Our results show that enriching prompts with fuzzy modelling of the nutritional information of the foods significantly improves the quality of the prompt responses.es_ES
dc.description.sponsorshipDepartamento Ciencias de la Computación e Inteligencia Artificial Grupo de investigación IDBISes_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033 PID2021-123960OB-I00es_ES
dc.description.sponsorshipERDF A way of making Europees_ES
dc.description.sponsorshipJunta de Andalucía PREDOC_00298es_ES
dc.description.sponsorshipUniversity of Granada CITIC-2024-06es_ES
dc.description.sponsorshipUniversidad de Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFood recommendationes_ES
dc.subjectGenerative modelses_ES
dc.subjectPrompt engineeringes_ES
dc.subjectNatural language processinges_ES
dc.subjectFuzzy logic es_ES
dc.titlePersonalised healthy food text recommendations through fuzzy linguistic variables: A generative AI-based approaches_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.asoc.2025.113234
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional