Mostrar el registro sencillo del ítem

dc.contributor.authorMoreno Bas, Elías 
dc.contributor.authorSerrano Pérez, Juan José 
dc.contributor.authorTorres Ruiz, Francisco De Asís 
dc.date.accessioned2025-05-20T09:08:13Z
dc.date.available2025-05-20T09:08:13Z
dc.date.issued2025
dc.identifier.citationMoreno, E., Serrano-Pérez, J.J. & Torres-Ruiz, F. Consistency of Bayes factors for linear models. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 119, 20 (2025). https://doi.org/10.1007/s13398-024-01685-xes_ES
dc.identifier.urihttps://hdl.handle.net/10481/104151
dc.description.abstractThe quality of a Bayes factor as variable selector crucially depends on the number of regressors, the sample size and the prior on the regression parameters, and hence it has to be established in a case-by-case basis. In this paper we analyze the consistency of a wide class of Bayes factors when the number of potential regressors grows as the sample size grows. We have found that when the number of regressors is finite some classes of priors yield inconsistency, and when the potential number of regressors grows at the same rate than the sample size different priors yield different degree of inconsistency. For moderate sample sizes, we evaluate the Bayes factors by comparing the posterior model probability. This gives valuable information to discriminate between the priors for the model parameters commonly used for variable selection.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleConsistency of Bayes factors for linear modelses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsembargoed accesses_ES
dc.identifier.doi10.1007/s13398-024-01685-x
dc.type.hasVersionAMes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional