Mostrar el registro sencillo del ítem

dc.contributor.authorMaldonado Correa, David 
dc.contributor.authorAcal González, Christian José 
dc.contributor.authorOrtiz Alcalá, Helena
dc.contributor.authorAguilera Del Pino, Ana María 
dc.contributor.authorRuiz Castro, Juan Eloy 
dc.contributor.authorCantudo Gómez, Antonio Manuel
dc.contributor.authorRoldán Aranda, Juan Bautista 
dc.date.accessioned2025-05-15T08:39:01Z
dc.date.available2025-05-15T08:39:01Z
dc.date.issued2025-05-15
dc.identifier.citationD. Maldonado et al. Materials Science in Semiconductor Processing 196 (2025) 109668. https://doi.org/10.1016/j.mssp.2025.109668es_ES
dc.identifier.urihttps://hdl.handle.net/10481/104123
dc.descriptionThe authors thank the support of the German Research Foundation (DFG) for funding this work under grant 546680029. They also acknowledge project PID2022-139586NB-C44 and PID2023-149087NB-I00 funded by MCIN/AEI/10.13039/501100011033 and FEDER, EU and the “María de Maeztu” Excellence Unit IMAG reference CEX2020-001105-M, funded by MCIN/AEI/10.13039/501100011033es_ES
dc.description.abstractThe conductance drift in HfO2-based memristors is a critical reliability concern that impacts in their application in non-volatile memory and neuromorphic computing integrated circuits. In this work we present a comprehensive statistical analysis of the conductance drift behavior in resistive random access memories (RRAM) whose physics is based on valence change mechanisms. We experimentally characterize the conductance time evolution in six different resistance states and analyze the suitability of various probability distributions to model the observed variability. Our results reveal that the log-logistic probability distribution provides the best fit to the experimental data for the resistance multilevels and the measured post-programming times under consideration. Additionally, we employ an analysis of variance (ANOVA) to statistically analyze the post-programming time and current level effects on the observed variability. Finally, in the context of the Stanford compact model, we describe how variability has to be implemented to obtain the probability distribution of measured current values.es_ES
dc.description.sponsorshipGerman Research Foundation (DFG) 546680029es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033 PID2022-139586NB-C44 and PID2023-149087NB-I00es_ES
dc.description.sponsorshipFEDER, EUes_ES
dc.description.sponsorship"María de Maeztu” CEX2020-001105-Mes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleA comprehensive statistical study of the post-programming conductance drift in HfO2-based memristive deviceses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.mssp.2025.109668
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional