Show simple item record

dc.contributor.authorDi Crescenzo, Antonio
dc.contributor.authorMusto, Sabina
dc.contributor.authorParaggio, Paola
dc.contributor.authorTorres Ruiz, Francisco De Asís 
dc.date.accessioned2025-05-12T11:01:06Z
dc.date.available2025-05-12T11:01:06Z
dc.date.issued2025-04-22
dc.identifier.citationA. Di Crescenzo, S. Musto, P. Paraggio et al. Applied Mathematical Modelling 145 (2025) 116146 [https://doi.org/10.1016/j.apm.2025.116146]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/104066
dc.descriptionThe used data are available on public repository (the links are listed in the References) and also in the attached file ``GDPEUROPEAN-COUNTRIES.xlsxes_ES
dc.description.abstractThis work introduces and analyzes lognormal diffusion processes subject to random catastrophes, i.e. random events which cause jumps and reset the process to a possibly different random state. The model incorporates a binomial distribution for the restarting points and employs stochastic techniques to describe cycles between catastrophes. A maximum likelihood approach is developed to estimate the model parameters and it is applied both to simulated and real data. More specifically, we perform a simulation study based on 50 replications and 500 sample paths, both in the case in which the size of the binomial distribution is known and in the case in which it is unknown. Moreover, we provide a real application to GDP (gross domestic product) trajectories of five European countries affected by the economic crises of 2009 and 2020. The analysis demonstrates the model’s effectiveness in mimicking complex phenomena characterized by growth dynamics interrupted by random external events.es_ES
dc.description.sponsorshipMUR-PRIN 2022 PNRR, project P2022XSF5H ``Stochastic Models in Biomathematics and Applications''es_ES
dc.description.sponsorshipEuropean Union -- Next Generation EU through MUR-PRIN 2022, project 2022XZSAFN ``Anomalous Phenomena on Regular and Irregular Domains: Approximating Complexity for the Applied Sciences''es_ES
dc.description.sponsorshipPID2020-1187879GB-100 and CEX2020-001105-M grants, funded by MCIN/AEI/ 10.13039/501100011033 (Spain)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectLognormal diffusion processeses_ES
dc.subjectBinomial catastropheses_ES
dc.subjectMaximum likelihood estimationes_ES
dc.titleSpecial lognormal diffusion processes with binomial random catastrophes and applications to economic dataes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.apm.2025.116146
dc.type.hasVersionVoRes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional