OPC-UA in artificial intelligence: a systematic review of the integration of data mining and NLP in industrial processes
Metadatos
Afficher la notice complèteEditorial
EDP Sciences
Materia
OPC-UA Industry 4.0 Control systems
Date
2025-03-31Referencia bibliográfica
Henry O. Velesaca, Juan A. Holgado-Terriza, OPC-UA in artificial intelligence: a systematic review of the integration of data mining and NLP in industrial processes, Manufacturing Rev. 12, 9 (2025), [https://doi.org/10.1051/mfreview/2025003]
Patrocinador
ESPOL project “Automatización del proceso de detección de fallas en piezas de hojalata usando visión por computador” (CIDIS-004-2023)Résumé
This systematic literature review explores the integration of OPC-UA with Data Mining and Natural
Language Processing (NLP) techniques within industrial environments. As industrial automation evolves, this
integration faces challenges related to intelligence, autonomy, security, privacy, and interoperability—similar.
The review evaluates current methodologies and applications aimed at addressing these challenges, particularly
in areas like predictive maintenance, anomaly detection, process optimization, and others. Reviewing several
primary studies, selected from high-impact scientific databases this paper identifies key strengths, weaknesses,
opportunities, and threats in leveraging OPC-UA protocols for AI-based automation. Moreover, it highlights
trends and future directions for improving decision-making processes and enhancing machine interoperability in
data-driven industry.