Mostrar el registro sencillo del ítem
Monotone heteroclinic solutions to semilinear PDEs in cylinders and applications
dc.contributor.author | Regibus, Fabio De | |
dc.contributor.author | Ruiz Aguilar, David | |
dc.date.accessioned | 2025-05-02T07:56:13Z | |
dc.date.available | 2025-05-02T07:56:13Z | |
dc.date.issued | 2025-03-24 | |
dc.identifier.citation | De Regibus, F., Ruiz, D. Monotone heteroclinic solutions to semilinear PDEs in cylinders and applications. Calc. Var. 64, 111 (2025). [https://doi.org/10.1007/s00526-025-02975-x] | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/103881 | |
dc.description.abstract | In this paper we show the existence of strictly monotone heteroclinic type solutions of semilinear elliptic equations in cylinders. The motivation of this construction is twofold: first, it implies the existence of an entire bounded solution of a semilinear equation without critical points which is not one-dimensional. Second, this gives an example of a bounded stationary solution for the 2D Euler equations without stagnation points which is not a shear flow, completing previous results of Hamel and Nadirashvili. The proof uses a minimization technique together with a truncation argument, and a limit procedure. | es_ES |
dc.description.sponsorship | Funding for open access publishing: Universidad de Granada/CBUA | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer Nature | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.title | Monotone heteroclinic solutions to semilinear PDEs in cylinders and applications | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1007/s00526-025-02975-x | |
dc.type.hasVersion | VoR | es_ES |