Mostrar el registro sencillo del ítem

dc.contributor.authorRegibus, Fabio De
dc.contributor.authorRuiz Aguilar, David 
dc.date.accessioned2025-05-02T07:56:13Z
dc.date.available2025-05-02T07:56:13Z
dc.date.issued2025-03-24
dc.identifier.citationDe Regibus, F., Ruiz, D. Monotone heteroclinic solutions to semilinear PDEs in cylinders and applications. Calc. Var. 64, 111 (2025). [https://doi.org/10.1007/s00526-025-02975-x]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/103881
dc.description.abstractIn this paper we show the existence of strictly monotone heteroclinic type solutions of semilinear elliptic equations in cylinders. The motivation of this construction is twofold: first, it implies the existence of an entire bounded solution of a semilinear equation without critical points which is not one-dimensional. Second, this gives an example of a bounded stationary solution for the 2D Euler equations without stagnation points which is not a shear flow, completing previous results of Hamel and Nadirashvili. The proof uses a minimization technique together with a truncation argument, and a limit procedure.es_ES
dc.description.sponsorshipFunding for open access publishing: Universidad de Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleMonotone heteroclinic solutions to semilinear PDEs in cylinders and applicationses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s00526-025-02975-x
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional