Afficher la notice abrégée

dc.contributor.authorLópez‑Joya, Salvador
dc.contributor.authorDíaz García, José Ángel 
dc.contributor.authorRuiz Jiménez, María Dolores 
dc.contributor.authorMartín Bautista, María José 
dc.date.accessioned2025-05-02T06:12:46Z
dc.date.available2025-05-02T06:12:46Z
dc.date.issued2025-03-10
dc.identifier.citationLopez-Joya, S., Diaz-Garcia, J.A., Ruiz, M.D. et al. Dissecting a social bot powered by generative AI: anatomy, new trends and challenges. Soc. Netw. Anal. Min. 15, 7 (2025). https://doi.org/10.1007/s13278-025-01410-5es_ES
dc.identifier.urihttps://hdl.handle.net/10481/103875
dc.descriptionThe research reported in this paper was supported by the DesinfoScan project: Grant TED2021-129402B-C21 funded by MCIU/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR, and FederaMed project: Grant PID2021-123960OB-I00 funded by MCIU/AEI/10.13039/501100011033 and by ERDF/EU. Finally, the research reported in this paper is also funded by the European Union (BAG-INTEL project, Grant Agreement No. 101121309). Funding for open access charge: Universidad de Granada/CBUA.es_ES
dc.description.abstractThe rise of social networks has transformed communication, information sharing and entertainment, but it has also facilitated the rise of harmful activities such as the spread of misinformation, often through the use of social bots. These automated accounts that mimic human behaviour have been implicated in significant events, including political interference and market manipulation. In this paper, we provide a comprehensive review of recent advances in social bot detection, with a particular focus on the role of generative AI and large language models. We present a new categorisation scheme for bots that aims to reduce class overlap while maintaining generality. In addition, we analyse the most commonly used datasets and state-of-the-art classification techniques, and through user profile-based measures, we use Explainable Artificial Intelligence (XAI) and data mining techniques to uncover factors that contribute to bot misclassification. Our findings contribute to the development of more robust detection methods, which are essential for mitigating the impact of malicious bots on online platforms.es_ES
dc.description.sponsorshipMCIU/AEI/10.13039/501100011033 TED2021-129402B-C21, PID2021-123960OB-I00es_ES
dc.description.sponsorshipEuropean Union NextGenerationEU/PRTRes_ES
dc.description.sponsorshipERDF/EUes_ES
dc.description.sponsorshipEuropean Union (BAG-INTEL project, Grant Agreement No. 101121309)es_ES
dc.description.sponsorshipUniversidad de Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBot detectiones_ES
dc.subjectGenerative AIes_ES
dc.subjectSocial Network Analysises_ES
dc.subjectXAIes_ES
dc.subjectData mininges_ES
dc.titleDissecting a social bot powered by generative AI: anatomy, new trends and challengeses_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/NextGenerationEU/PRTR/TED2021-129402B-C21es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s13278-025-01410-5
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional