A computational Approach to the Study of Finite-Complement Submonids of an Affine Cone
Metadatos
Mostrar el registro completo del ítemEditorial
Springer Nature
Materia
Affine semigroup C-semigroups Embedding dimension Frobenius element Generalized numerical semigroup
Fecha
2025-03-08Referencia bibliográfica
Rosales, J.C., Tapia-Ramos, R. & Vigneron-Tenorio, A. A computational Approach to the Study of Finite-Complement Submonids of an Affine Cone. Results Math 80, 66 (2025). https://doi.org/10.1007/s00025-025-02373-x
Patrocinador
Universidad de Cádiz/CBUA; MICIU/AEI/10.13039/501100011033 PID2022-138906NB-C21; ERDF/EU; Junta de Andalucía ProyExcel_00868, FQM343; Universidad de Cádiz, Spain, INDESSResumen
Let C ⊆ Np be an integer cone. A C-semigroup S ⊆ C is an affine
semigroup such that the set C\S is finite. Such C-semigroups are central
to our study. We develop new algorithms for computing C-semigroups
with specified invariants, including genus, Frobenius element, and their
combinations, among other invariants. To achieve this, we introduce a
new class of C-semigroups, termed B-semigroups. By fixing the degree
lexicographic order, we also research the embedding dimension for both
ordinary and mult-embedded N2-semigroups. These results are applied to
test some generalizations of Wilf’s conjecture.