Mostrar el registro sencillo del ítem

dc.contributor.authorMartínez Barbero, José Pablo
dc.contributor.authorPérez García, Francisco Javier
dc.contributor.authorLópez Cornejo, David
dc.contributor.authorGarcía Cerezo, Marta
dc.contributor.authorJiménez Gutiérrez, Paula María
dc.contributor.authorBalderas, Luis
dc.contributor.authorLastra Leidinger, Miguel 
dc.contributor.authorArauzo-Zofra, Antonio
dc.contributor.authorBenítez Sánchez, José Manuel 
dc.contributor.authorLáinez Ramos-Bossini, Antonio Jesús
dc.date.accessioned2025-04-11T06:41:41Z
dc.date.available2025-04-11T06:41:41Z
dc.date.issued2025-04-05
dc.identifier.citationMartínez Barbero, José Pablo et al. A Combined Approach Using T2*-Weighted Dynamic Susceptibility Contrast MRI Perfusion Parameters and Radiomics to Differentiate Between Radionecrosis and Glioma Progression: A Proof-of-Concept Study. Life 2025, 15, 606. https://doi.org/10.3390/life15040606es_ES
dc.identifier.urihttps://hdl.handle.net/10481/103588
dc.descriptionThis research was funded by grant number PID2020-118224RB-I00 and grant number PID2023-151336OB-I00, both funded by MICIU/AIE/10.13039/501100011033 and by FEDER, EU.es_ES
dc.descriptionThe following supporting information can be downloaded at https://www.mdpi.com/article/10.3390/life15040606/s1es_ES
dc.description.abstractDifferentiating tumor progression from radionecrosis in patients with treated brain glioma represents a significant clinical challenge due to overlapping imaging features. This study aimed to develop and evaluate a machine learning model that integrates radiomics features and T2*-weighted Dynamic Susceptibility Contrast MRI perfusion (DSC MRI) parameters to improve diagnostic accuracy in distinguishing these entities. A retrospective cohort of 46 patients (25 with confirmed radionecrosis, 21 with glioma progression) was analyzed. From lesion segmentation on DSC MRI, 851 radiomics features were extracted using PyRadiomics, alongside seven perfusion parameters (e.g., relative cerebral blood volume, time to peak) obtained from time–intensity curves (TICs). These features were combined into a single dataset and 14 classification algorithms were evaluated with GroupKFold cross-validation (k = 4). The top-performing model was selected based on predictive area under the curve (AUC) yield. The Logistic Regression classifier achieved the highest performance, with an AUC of 0.88, followed by multilayer perceptron and AdaBoost with AUC values of 0.85 and 0.79, respectively. The precision values were 72%, 74%, and 78% for the three models, respectively, while the accuracy was 63%, 70%, and 71%. Key predictive variables included radiomics features like wavelet-HHH_firstorder_Mean and mean normalized TIC values. Our combined approach integrating radiomics and DSC MRI parameters shows strong potential for distinguishing radionecrosis from glioma progression. However, further validation with larger cohorts is essential to confirm the generalizability of this approach.es_ES
dc.description.sponsorshipMICIU/AIE/10.13039/501100011033 PID2020-118224RB-I00, PID2023-151336OB-I00es_ES
dc.description.sponsorshipFEDER, EUes_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.titleA Combined Approach Using T2*-Weighted Dynamic Susceptibility Contrast MRI Perfusion Parameters and Radiomics to Differentiate Between Radionecrosis and Glioma Progression: A Proof-of-Concept Studyes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/life15040606
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License