Show simple item record

dc.contributor.authorMedina Sabino, Rubén 
dc.contributor.authorRueda Zoca, Abraham
dc.date.accessioned2025-04-04T12:11:53Z
dc.date.available2025-04-04T12:11:53Z
dc.date.issued2023-10-26
dc.identifier.citationPublished version: Medina Sabino, Rubén y Rueda Zoca, Abraham. Journal of Functional Analysis Volume 289, Issue 1, 1 July 2025, 110896. https://doi.org/10.1016/j.jfa.2025.110896es_ES
dc.identifier.urihttps://hdl.handle.net/10481/103462
dc.descriptionThis work was supported by MCIN/AEI/10.13039/501100011033: Grant PID2021-122126NB-C31 and by Junta de Andalucía: Grants FQM-0185 and PY20_00255. The research of Rubén Medina was also supported by FPU19/04085 MIU (Spain) Grant, by GA23-04776S project (Czech Republic) and by SGS22/053/OHK3/1T/13 project (Czech Republic). The research of Abraham Rueda Zoca was also supported by Fundación Séneca: ACyT Región de Murcia grant 21955/PI/22 and by Generalitat Valenciana project CIGE/2022/97.es_ES
dc.description.abstractLet M be a metric space and X be a Banach space. In this paper we address several questions about the structure of F(M )̂ ⊗π X and Lip0(M, X). Our results are the following: (1) We prove that if M is a length metric space then Lip0(M, X) has the Daugavet property. As a consequence, if M is length we obtain that F(M )̂ ⊗π X has the Daugavet property. This gives an affirmative answer to [13, Question 1] (also asked in [24, Remark 3.8]). (2) We prove that if M is a non-uniformly discrete metric space or an unbounded metric space then the norm of F(M )̂ ⊗π X is octahe- dral, which solves [6, Question 3.2 (1)]. (3) We characterise all the Banach spaces X such that L(X, Y ) is octahedral for every Banach space Y , which solves a question by Johann Langemets.es_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033 PID2021-122126NB-C31es_ES
dc.description.sponsorshipJunta de Andalucía FQM-0185, PY20_00255es_ES
dc.description.sponsorshipFPU19/04085 MIU (Spain)es_ES
dc.description.sponsorshipCzech Republic GA23-04776S, SGS22/053/OHK3/1T/13es_ES
dc.description.sponsorshipFundación Séneca: ACyT Región de Murcia grant 21955/PI/22es_ES
dc.description.sponsorshipGeneralitat Valenciana CIGE/2022/97es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectLipschitz-free spacees_ES
dc.subjectTensor productes_ES
dc.subjectDaugavet propertyes_ES
dc.subjectOctahedral normses_ES
dc.subjectPerturbation of Lipschitz mapses_ES
dc.titleA characterisation of the Daugavet property in spaces of vector-valued Lipschitz functionses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.jfa.2025.110896
dc.identifier.doi10.48550/arXiv.2305.05956
dc.type.hasVersionSMURes_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional