Mostrar el registro sencillo del ítem

dc.contributor.authorLópez Baldomero, Ana Belén 
dc.contributor.authorBuzzelli, Marco
dc.contributor.authorMoronta-Montero, Francisco
dc.contributor.authorMartínez Domingo, Miguel Ángel 
dc.contributor.authorValero Benito, Eva María 
dc.date.accessioned2025-04-03T06:25:31Z
dc.date.available2025-04-03T06:25:31Z
dc.date.issued2025-02
dc.identifier.citationLópez-Baldomero, A. B. et al. (2025). Ink classification in historical documents using hyperspectral imaging and machine learning methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 125916. https://doi.org/10.1016/j.saa.2025.125916es_ES
dc.identifier.urihttps://hdl.handle.net/10481/103408
dc.descriptionThis work was supported by Ministry of Universities (Spain) [grant number FPU2020-05532], by MCIN/AEI/10.13039/501100011033, by “ERDF A way of making Europe” [grant number PID2021-124446NB-100], and by “ESF Investing in your future” [grant number PRE2022-101352]. This work was partially supported by the Italian Ministry for Universities and Research (MUR) (Italy) under the grant “Dipartimenti di Eccellenza 2023-2027” of the Department of Informatics, Systems and Communication of the University of Milano-Bicocca, Italy.es_ES
dc.description.abstractInk identification using only spectral reflectance information poses significant challenges due to material degradation, aging, and spectral overlap between ink classes. This study explores the use of hyperspectral imaging and machine learning techniques to classify three distinct types of inks: pure metallo-gallate, carbon-containing, and non-carbon-containing inks. Six supervised classification models, including five traditional algorithms (Support Vector Machines, K-Nearest Neighbors, Linear Discriminant Analysis, Random Forest, and Partial Least Squares Discriminant Analysis) and one Deep Learning-based model, were evaluated. The methodology integrates data fusion from different imaging systems, sample extraction, ground truth creation, and a post-processing step to increase uniformity. The evaluation was performed using both mock-up samples and historical documents, achieving micro-averaged accuracy above 90% for all models. The best performance was obtained using the DL-based model (98% F1-score), followed by the Support Vector Machine model. In the case study documents, the overall performance of the traditional model was better. This study highlights the potential of hyperspectral imaging combined with machine learning for non-invasive ink identification and mapping, even under challenging conditions, contributing to the conservation and analysis of historical manuscripts.es_ES
dc.description.sponsorshipMICIU/AEI/10.13039/501100011033 PID2021-124446NB-I00es_ES
dc.description.sponsorshipERDF, EUes_ES
dc.description.sponsorshipMinistry of Universities (Spain) [FPU2020-05532]es_ES
dc.description.sponsorship“ESF Investing in your future” [PRE2022-101352]es_ES
dc.description.sponsorshipMinistry for Universities and Research (MUR) (Italy)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofseriesSpectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy;
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectInk classificationes_ES
dc.subjecthistorical documentses_ES
dc.subjecthyperspectral imaginges_ES
dc.subjectmaterial identificationes_ES
dc.subjectmachine learning approaches_ES
dc.subjectdata fusiones_ES
dc.subjectcultural heritagees_ES
dc.titleInk classification in historical documents using hyperspectral imaging and machine learning methodses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.saa.2025.125916
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional