Mostrar el registro sencillo del ítem

dc.contributor.authorSerra, Giuseppe
dc.contributor.authorStavrou, Photios A.
dc.contributor.authorKountouris, Marios
dc.date.accessioned2025-04-01T12:20:03Z
dc.date.available2025-04-01T12:20:03Z
dc.date.issued2024-07
dc.identifier.citationG. Serra, P. A. Stavrou and M. Kountouris, "Computation of the Multivariate Gaussian Rate-Distortion-Perception Function," 2024Serra, Giuseppe et al. Computation of the Multivariate Gaussian Rate-Distortion-Perception Function. IEEE International Symposium on Information Theory (ISIT), Athens, Greece, 2024, pp. 1077-1082, doi: 10.1109/ISIT57864.2024.10619375es_ES
dc.identifier.urihttps://hdl.handle.net/10481/103373
dc.descriptionThis work is part of a project that has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 101003431).es_ES
dc.description.abstractIn this paper, we propose a generic method for computing the rate-distortion-perception function (RDPF) of a multivariate Gaussian source under tensorizable distortion and perception metrics. Through the assumption of a jointly Gaussian reconstruction, we establish that the optimal solution of the RDPF belongs to the vector space spanned by the eigenvector of the source covariance matrix. Consequently, the multivariate optimization problem can be expressed as a function of the scalar Gaussian RDPFs of the source marginals, constrained by global distortion and perception levels. Utilizing this result, we devise an alternating minimization scheme based on the block nonlinear Gauss-Seidel method. This scheme solves optimally the optimization problem while identifying the optimal stage-wise distortion and perception levels. Furthermore, the associated algorithmic embodiment is provided, along with the convergence and the rate of convergence characterization. Lastly, in the regime of “perfect realism”, we provide the analytical solution for the multivariate Gaussian RDPF. We corroborate our findings with numerical simulations and draw connections to existing results.es_ES
dc.description.sponsorshipEuropean Research Council (ERC)es_ES
dc.description.sponsorshipEuropean Union's Horizon 2020, 101003431es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleComputation of the Multivariate Gaussian Rate-Distortion-Perception Functiones_ES
dc.typeconference outputes_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101003431es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/ISIT57864.2024.10619375
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional