Mostrar el registro sencillo del ítem

dc.contributor.authorHerrera-Poyatos, David
dc.contributor.authorHerrera-Poyatos, Andrés
dc.contributor.authorMontes, Rosana
dc.contributor.authorPalacios, Paloma de
dc.contributor.authorEsteban, Luis G.
dc.contributor.authorGarcía Iruela, Alberto
dc.contributor.authorGarcía Fernández, Francisco 
dc.contributor.authorHerrera Triguero, Francisco 
dc.date.accessioned2025-04-01T11:24:59Z
dc.date.available2025-04-01T11:24:59Z
dc.date.issued2024-06-17
dc.identifier.citationPublished version: D. Herrera-Poyatos et al., "Deep Learning methodology for the identification of wood species using high-resolution macroscopic images," 2024 International Joint Conference on Neural Networks (IJCNN), Yokohama, Japan, 2024, pp. 1-8, doi: 10.1109/IJCNN60899.2024.10650590es_ES
dc.identifier.urihttps://hdl.handle.net/10481/103370
dc.descriptionThis work has been partially supported by the Ministry of Science and Technology of Spain under the project PID2020- 119478GB-I00. This work has been also partially supported by Programa Nacional de Desarrollo Rural 2014-2020 del Ministerio de Agricultura, Pesca y Alimentación y el Fondo Europeo Agrícola de Desarrollo Rural (FEADER). Thank also to Jodrell Laboratory of the Royal Botanic Gardens, Kew for donation of wood samples.es_ES
dc.description.abstractSignificant advancements in the field of wood species identification are needed worldwide to support sustainable timber trade. In this work we contribute to automate the identification of wood species via high-resolution macroscopic images of timber. The main challenge of this problem is that fine-grained patterns in timber are crucial in order to accurately identify wood species, and these patterns are not properly learned by traditional convolutional neural networks (CNNs) trained on low/medium resolution images. We propose a Timber Deep Learning Identification with Patch-based Inference Voting methodology, abbreviated TDLI-PIV methodology. Our proposal exploits the concept of patching and the availability of high-resolution macroscopic images of timber in order to overcome the inherent challenges that CNNs face in timber identification. The TDLI-PIV methodology is able to capture fine-grained patterns in timber and, moreover, boosts robustness and prediction accuracy via a collaborative voting inference process. In this work we also introduce a new data set of marcroscopic images of timber, called GOIMAI-Phase-I, which has been obtained using optical magnification in order to capture fine-grained details, which contrasts to the other datasets that are publicly available. More concretely, images in GOIMAI-Phase-I are taken with a smartphone with a 24x magnifying lens attached to the camera. Our data set contains 2120 images of timber and covers 37 legally protected wood species. Our experiments have assessed the performance of the TDLI-PIV methodology, involving the comparison with other methodologies available in the literature, exploration of data augmentation methods and the effect that the dataset size has on the accuracy of TDLI-PIV.es_ES
dc.description.sponsorshipMinistry of Science and Technology of Spain PID2020-119478GB-I00es_ES
dc.description.sponsorshipMinisterio de Agricultura, Pesca y Alimentaciónes_ES
dc.description.sponsorshipFondo Europeo Agrícola de Desarrollo Rural (FEADER)es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectWood species identificationes_ES
dc.subjectDeep learninges_ES
dc.subjectConvolutional neural networkses_ES
dc.subjectPatch-based inference voting classificationes_ES
dc.titleDeep Learning methodology for the identification of wood species using high-resolution macroscopic imageses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/IJCNN60899.2024.10650590
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional