Afficher la notice abrégée

dc.contributor.authorRodríguez Heras, Sara 
dc.contributor.authorColomer-Boronat, Ana
dc.contributor.authorPeris Ripollés, Guillermo
dc.contributor.authorSánchez, Laura
dc.contributor.authorTristán Ramos, Pablo
dc.contributor.authorGázquez Gutiérrez, Ana 
dc.contributor.authorBarturen, Guillermo
dc.contributor.authorSánchez-Luque, Franscisco J.
dc.contributor.authorGarcía Pérez, José Luis
dc.contributor.authorMacías, Sara
dc.contributor.authorRodríguez Heras, Sara 
dc.date.accessioned2025-03-27T11:36:27Z
dc.date.available2025-03-27T11:36:27Z
dc.date.issued2025-03
dc.identifier.citationColomer-Boronat et al. Primate-specific regulation by DGCR8. Nucleic Acids Research, 2025, 53, gkaf197. https://doi.org/10.1093/nar/gkaf197es_ES
dc.identifier.urihttps://hdl.handle.net/10481/103305
dc.descriptionThis work was supported by Ministerio de Ciencia e Innovación MCIN/AEI/10.13039/501100011033 [PID2020-115033RB-I00, PEJ2018-003280-A, RYC-2016-21395, and CNS2023-145402] ; ESF; Career Integration Grant—Marie Curie [FP7-PEOPLE-2011-CIG-303812]; FEDER/Consejería de Transformación Económica, Industria, Conocimiento y Universidades (Junta de Andalucía) [PY20_00619 and A-CTS-28_UGR20 grants]; donation to ‘Aula de estudios 22qDS’ (to S.R.H.); Wellcome Trust grants [221737/Z/20/Z and 107665/Z/15/Z]; the Royal Society grant [RGS\R1\191368]; the Wellcome Trust iTPA [PIII021] (to S.M.); MRC—Precision Medicine fellowship (to L.K.); Darwin Trust fellowship (to P.C.); Ministerio de Ciencia e Innovación, Agencia estatal de Investigación [PRE2021-098878] (to A.G.-G.); European Research Council (ERC) [ERC-Consolidator ERC-STG-2012-309433]; the Government of Spain [Ministerio de Ciencia e Innovación SAF2017-89745-R and PID2021-128934NB-I00]; Junta de Andalucia [P12-CTS-2256 and P18-RT-5067]; a private donation from Ms Francisca Serrano (Trading y Bolsa para Torpes, Granada, Spain) (to J.L.G.P.); and the Agencia Estatal de Investigación [RYC2021-031920-I, PID2022-143185NA-I00 and CNS2022-136033] (to F.J.S.L.). Funding to pay the Open Access publication charges for this article was provided by Universidad de Granada/CBUA.es_ES
dc.description.abstractThe 22q11.2 deletion syndrome (22qDS) is a human disorder where the majority of clinical manifestations originate during embryonic development. 22qDS is caused by a microdeletion in one chromosome 22, including DGCR8, an essential gene for miRNA production. However, the impact of DGCR8 hemizygosity on human development is still unclear. In this study, we generated two human pluripotent cell models containing a single functional DGCR8 allele to elucidate its role on early development. DGCR8+/- human embryonic stem cells (hESCs) showed increased apoptosis as well as self-renewal and differentiation defects in both the naïve and primed states. The expression of primate-specific miRNAs was largely affected, due to impaired miRNA processing and chromatin accessibility. DGCR8+/- hESCs also displayed a pronounced reduction in human endogenous retrovirus class H (HERVH) expression, a primate-specific retroelement essential for pluripotency maintenance. The reintroduction of miRNAs belonging to the primate-specific C19MC cluster as well as the miR-371-3 cluster rescued the defects of DGCR8+/- cells. Mechanistically, downregulation of HERVH by depletion of primate-specific miRNAs was mediated by KLF4. Altogether, we show that DGCR8 is haploinsufficient in humans and that miRNAs and transposable elements may have co-evolved in primates as part of an essential regulatory network to maintain stem cell identityes_ES
dc.description.sponsorshipESFes_ES
dc.description.sponsorshipMarie Curie [FP7-PEOPLE-2011-CIG-303812]es_ES
dc.description.sponsorshipFEDER/Junta de Andalucía [PY20_00619, A-CTS-28_UGR20]es_ES
dc.description.sponsorshipWellcome Trust [221737/Z/20/Z and 107665/Z/15/Z]es_ES
dc.description.sponsorshipRoyal Society [RGS\R1\191368]es_ES
dc.description.sponsorshipWellcome Trust iTPA [PIII021]es_ES
dc.description.sponsorshipMRC—Precision Medicine fellowshipes_ES
dc.description.sponsorshipDarwin Trust fellowshipes_ES
dc.description.sponsorshipMCIN/AEI/10.13039/501100011033 [PID2020-115033RB-I00, PEJ2018-003280-A, RYC-2016-21395, CNS2023-145402]; [PRE2021-098878]es_ES
dc.description.sponsorshipERC-Consolidator ERC-STG-2012-309433es_ES
dc.description.sponsorshipGovernment of Spain SAF2017-89745-R and PID2021-128934NB-I00es_ES
dc.description.sponsorshipJunta de Andalucía [P12-CTS-2256 and P18-RT-5067]es_ES
dc.description.sponsorshipAgencia Estatal de Investigación [RYC2021-031920-I, PID2022-143185NA-I00 and CNS2022-136033]es_ES
dc.description.sponsorshipUniversidad de Granada/CBUAes_ES
dc.language.isoenges_ES
dc.publisherOxford University Presses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleDGCR8 haploinsufficiency leads to primate-specific RNA dysregulation and pluripotency defectses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1093/nar/gkaf197
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional