Mostrar el registro sencillo del ítem

dc.contributor.authorBartolomei, Arianna
dc.contributor.authorD’Amato, Elvira
dc.contributor.authorScarpa, Marina
dc.contributor.authorBergamaschi, Greta
dc.contributor.authorGori, Alessandro
dc.contributor.authorBettotti, Paolo
dc.date.accessioned2025-03-26T07:54:50Z
dc.date.available2025-03-26T07:54:50Z
dc.date.issued2025-03-12
dc.identifier.citationBartolomei, A.; D’Amato, E.; Scarpa, M.; Bergamaschi, G.; Gori, A.; Bettotti, P. Ion-Specific Gelation and Internal Dynamics of Nanocellulose Biocompatible Hybrid Hydrogels: Insights from Fluctuation Analysis. Gels 2025, 11, 197. https://doi.org/10.3390/gels11030197es_ES
dc.identifier.urihttps://hdl.handle.net/10481/103292
dc.descriptionThis research was partially funded by the European Union—NextGenerationEU, M4 C2 Inv. 1.1—PRIN 2022 PNRR Prot. n. P2022YKTR5, CUP: E53D23017870001. We acknowledge financial support the Italian Ministry of Research (MUR), Project Title: Green Membranes from Nano-Cellulose-based materials for carbon dioxide sequestration (Menace@CO2), funded by Unione Europea, Next-Generation EU, Mission 4, Component 2—CUP E53D23005130006.es_ES
dc.descriptionSupplementary Materials. The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/gels11030197/s1es_ES
dc.description.abstractHydrogels find widespread use in bioapplications for their ability to retain large amounts of water while maintaining structural integrity. In this article, we investigate hybrid hydrogels made of nanocellulose and either amino–polyethylenglycol or sodium alginates and we present two novel results: (1) the biocompatibility of the amino-containing hybrid gel synthesized using a simplified receipt does not require any intermediate synthetic step to functionalize either component and (2) the fluctuation in the second-order correlation function of a dynamic light scattering experiment provides relevant information about the characteristic internal dynamics of the materials across the entire sol–gel transition as well as quantitative information about the ion-specific gel formation. This novel approach offers significantly better temporal (tens of μs) and spatial (tens of μm) resolution than many other state-of-the-art techniques commonly used for such analyses (such as rheometry, SAXS, and NMR) and it might find widespread application in the characterization of nano- to microscale dynamics in soft materials.es_ES
dc.description.sponsorshipEuropean Union—NextGenerationEUes_ES
dc.description.sponsorshipM4 C2 Inv. 1.1—PRIN 2022 PNRR Prot. n. P2022YKTR5, CUP: E53D23017870001es_ES
dc.description.sponsorshipItalian Ministry of Research (MUR)es_ES
dc.description.sponsorshipMission 4, Component 2—CUP: E53D23005130006es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectNanocellulosees_ES
dc.subjectHydrogelses_ES
dc.subjectDynamic light scatteringes_ES
dc.subjectSol–gel transitiones_ES
dc.subjectCell culturees_ES
dc.titleIon-Specific Gelation and Internal Dynamics of Nanocellulose Biocompatible Hybrid Hydrogels: Insights from Fluctuation Analysises_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/gels11030197
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional