Afficher la notice abrégée

dc.contributor.authorMoreno-Foronda, Inmaculada
dc.contributor.authorSánchez Martínez, María Teresa 
dc.contributor.authorPareja-Eastaway, Montserrat
dc.date.accessioned2025-03-24T08:43:37Z
dc.date.available2025-03-24T08:43:37Z
dc.date.issued2025-01-31
dc.identifier.citationMoreno-Foronda, I.; Sánchez-Martínez, M.-T.; Pareja-Eastaway, M. Comparative Analysis of Advanced Models for Predicting Housing Prices: A Review. Urban Sci. 2025, 9, 32. https://doi.org/10.3390/urbansci9020032es_ES
dc.identifier.urihttps://hdl.handle.net/10481/103260
dc.description.abstractUnderstanding the determinants of housing price movements is an ongoing subject of debate. Estimating these determinants becomes a valuable tool for predicting price trends and mitigating the risks of market volatility. This article presents a systematic review analyzing studies that compare various machine learning (ML) tools with hedonic regression, aiming to assess whether real estate price predictions based on mathematical techniques and artificial intelligence enhance the accuracy of hedonic price models used for valuing residential properties. ML models (neural networks, decision trees, random forests, among others) provide high predictive capacity and greater explanatory power due to the better fit of their statistical measures. However, hedonic regression models, while less precise, are more robust, as they can identify the housing attributes that most influence price levels. These attributes include the property’s location, its internal features, and the distance from the property to city centers.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMachine learninges_ES
dc.subjectHedonic priceses_ES
dc.subjectPredictiones_ES
dc.subjectPrices es_ES
dc.subjectHousing es_ES
dc.titleComparative Analysis of Advanced Models for Predicting Housing Prices: A Reviewes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/urbansci9020032
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional