Mostrar el registro sencillo del ítem

dc.contributor.authorFertl, Elfi
dc.contributor.authorCastillo Morales, María Encarnación 
dc.contributor.authorStettinger, Georg
dc.contributor.authorPegalajar Cuéllar, Manuel 
dc.contributor.authorMorales Santos, Diego Pedro 
dc.date.accessioned2025-03-21T12:38:03Z
dc.date.available2025-03-21T12:38:03Z
dc.date.issued2025-03-08
dc.identifier.citationFertl, E.; Castillo, E.; Stettinger, G.; Cuéllar, M.P.; Morales, D.P. Hand Gesture Recognition on Edge Devices: Sensor Technologies, Algorithms, and Processing Hardware. Sensors 2025, 25, 1687. https://doi.org/10.3390/s25061687es_ES
dc.identifier.urihttps://hdl.handle.net/10481/103227
dc.descriptionThis work was supported by Infineon Technologies AG. Additional funding was provided by the program “Neue Fahrzeug- und Systemtechnologien” from the Bundesministerium für Wirtschaft und Energie (BMWi) through the funding project “SEMULIN—Selbstunterstützende Multimodale Interaktion” (FKZ 19A20012D).es_ES
dc.description.abstractHand gesture recognition (HGR) is a convenient and natural form of human–computer interaction. It is suitable for various applications. Much research has already focused on wearable device-based HGR. By contrast, this paper gives an overview focused on device-free HGR. That means we evaluate HGR systems that do not require the user to wear something like a data glove or hold a device. HGR systems are explored regarding technology, hardware, and algorithms. The interconnectedness of timing and power requirements with hardware, pre-processing algorithm, classification, and technology and how they permit more or less granularity, accuracy, and number of gestures is clearly demonstrated. Sensor modalities evaluated are WIFI, vision, radar, mobile networks, and ultrasound. The pre-processing technologies stereo vision, multiple-input multiple-output (MIMO), spectrogram, phased array, range-doppler-map, range-angle-map, doppler-angle-map, and multilateration are explored. Classification approaches with and without ML are studied. Among those with ML, assessed algorithms range from simple tree structures to transformers. All applications are evaluated taking into account their level of integration. This encompasses determining whether the application presented is suitable for edge integration, their real-time capability, whether continuous learning is implemented, which robustness was achieved, whether ML is applied, and the accuracy level. Our survey aims to provide a thorough understanding of the current state of the art in device-free HGR on edge devices and in general. Finally, on the basis of present-day challenges and opportunities in this field, we outline which further research we suggest for HGR improvement. Our goal is to promote the development of efficient and accurate gesture recognition systems.es_ES
dc.description.sponsorshipInfineon Technologies AGes_ES
dc.description.sponsorshipBundesministerium für Wirtschaft und Energie (BMWi) (FKZ 19A20012D)es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectHand gesture recognitiones_ES
dc.subjectEdge machine learninges_ES
dc.subjectArtificial intelligence es_ES
dc.subjectAlgorithms es_ES
dc.subjectSignal processing es_ES
dc.titleHand Gesture Recognition on Edge Devices: Sensor Technologies, Algorithms, and Processing Hardwarees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/s25061687
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional