Mostrar el registro sencillo del ítem

dc.contributor.authorCastellano-Hinojosa, Antonio
dc.contributor.authorGallardo Altamirano, Manuel Jesús 
dc.contributor.authorPozo Llorente, Clementina 
dc.contributor.authorGonzález Martínez, Alejandro 
dc.contributor.authorGonzález López, Jesús Juan 
dc.contributor.authorMarshall, Ian P.G.
dc.date.accessioned2025-03-19T09:35:08Z
dc.date.available2025-03-19T09:35:08Z
dc.date.issued2025-04
dc.identifier.citationA. Castellano-Hinojosa et al. Salinity levels influence treatment performance and the activity of electroactive microorganisms in a microbial fuel cell system for wastewater treatment. Journal of Environmental Management 379 (2025) 124858. https://doi.org/10.1016/j.jenvman.2025.124858es_ES
dc.identifier.urihttps://hdl.handle.net/10481/103172
dc.descriptionThis research was financially supported by the Marie Skłodowska-Curie Postdoctoral European Fellowship (101108081) from HORIZON-MSCA-2022-PF-01 (Horizon Europe, 2022).es_ES
dc.description.abstractThere is growing interest in developing effective treatment technologies to mitigate the environmental impact of saline wastewater while also potentially recovering valuable resources from it. However, it remains largely unknown how different salinity levels impact treatment performance, energy generation, and the diversity and composition of electroactive microorganisms in MFCs treating real effluents such as urban wastewater. This study explores the impact of three salinity levels (3.5, 7, and 15 g/L NaCl) on current production, organic removal rates, and bacterial community dynamics in a continuous-flow microbial fuel cell (MFC) fed with urban wastewater. Using metagenomics and metatranscriptomics, we explored variations in the abundance and expression of extracellular electron transfer (EET) genes and those involved in other general metabolisms. We found that low salinity (3.5 g/L NaCl) enhanced both current production and organic removal efficiency compared to higher salinity levels. This improvement was linked to an increased abundance and activity of electroactive microorganisms, particularly taxa within the Ignavibacteria class, which possess genes coding for outer membrane cytochromes and porin cytochromes. Additionally, salinity influenced general metabolic genes and microbial community composition, with higher salinity levels limiting bacterial growth and diversity. This research provides valuable insights into the interplay between salinity stress and microbial adaptation, contributing to the optimization of MFC technologies for enhanced environmental and bioengineering applications.es_ES
dc.description.sponsorshipMarie Skłodowska-Curie Postdoctoral European Fellowship (101108081) HORIZON-MSCA-2022-PF-01es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectWastewateres_ES
dc.subjectAnode biofilmes_ES
dc.subjectElectroactive microorganismses_ES
dc.subjectCurrent productiones_ES
dc.subjectMetagenomicses_ES
dc.subjectMetatranscriptomicses_ES
dc.subjectAgua residuales_ES
dc.subjectMetagenómicaes_ES
dc.subjectMetatranscriptómicaes_ES
dc.titleSalinity levels influence treatment performance and the activity of electroactive microorganisms in a microbial fuel cell system for wastewater treatmentes_ES
dc.typejournal articlees_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/101108081es_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.jenvman.2025.124858
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional