Mostrar el registro sencillo del ítem

dc.contributor.authorBehrle, Raphael
dc.contributor.authorPacheco-Sanchez, Anibal
dc.contributor.authorBarth, Sven
dc.contributor.authorWeber, Walter M.
dc.contributor.authorSistani, Masiar
dc.date.accessioned2025-03-17T13:18:34Z
dc.date.available2025-03-17T13:18:34Z
dc.date.issued2025-02-18
dc.identifier.citationNanoscale Adv., 2025, Advance Article [DOI: 10.1039/d4na00957f]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/103135
dc.description.abstractSchottky barrier field-effect transistors (SBFETs) are a promising family of devices suitable for realizing “Beyond CMOS” paradigms. As the SBFET device operation is strongly dependent on the metal–semiconductor junction properties, it is important to extract and understand the activation energy to inject charge carriers into the semiconductor channel. In this regard, the three-dimensional (3D) thermionic emission (TE) and the one-dimensional (1D) Landauer–Büttiker (LB) theory are among the most sophisticated methods. Here, both methods are used to analyze the charge carrier injection capabilities of Al–Ge–Al nanowire (NW) heterostructure SBFETs. While the 3D TE model underestimates the activation energy Ea in strong accumulation, at the intrinsic off-point, where merely TE contributes to charge carrier transport, both models provide reasonable values close to the theoretically expected Schottky barrier height. Analyzing the underlying mathematical models of 3D TE and 1D LB reveals a quadratic and linear increase in TE depending on temperature, respectively. Moreover, until now effects on the Ea originating from the 1D nature of the proposed device were rarely investigated in NW transistors. This comparison contributes to a better understanding and the advancement of SBFET devices and circuit technologies.es_ES
dc.description.sponsorshipAustrian Science Fund (FWF) [10.55776/I5383]es_ES
dc.description.sponsorshipMinisterio de Ciencia, Innovación y Universidades under grant agreement FJC2020- 046213-I. Ses_ES
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG) through grant BA 6595/4-1es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleThermionic injection analysis in germanium nanowire Schottky junction FETs by means of 1D and 3D extraction methodses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1039/d4na00957f
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional