Mostrar el registro sencillo del ítem

dc.contributor.authorSeveriche Maury, Zurisaddai
dc.contributor.authorUc-Ríos, Carlos Eduardo
dc.contributor.authorArrubla Hoyos, Wilson
dc.contributor.authorCama-Pinto, Dora
dc.contributor.authorHolgado Terriza, Juan Antonio 
dc.contributor.authorDamas Hermoso, Miguel 
dc.contributor.authorCama Pinto, Alejandro
dc.date.accessioned2025-03-13T13:41:55Z
dc.date.available2025-03-13T13:41:55Z
dc.date.issued2025-03-04
dc.identifier.citationSeveriche-Maury, Z.; Uc-Rios, C.E.; Arrubla-Hoyos, W.; Cama-Pinto, D.; Holgado-Terriza, J.A.; Damas-Hermoso, M.; Cama-Pinto, A. Forecasting Residential Energy Consumption with the Use of Long Short-Term Memory Recurrent Neural Networks. Energies 2025, 18, 1247. https://doi.org/10.3390/en18051247es_ES
dc.identifier.urihttps://hdl.handle.net/10481/103051
dc.descriptionUniversity of Sucre and the University of Granada. Project PID2022-136779OB-C33 (PLEISAR) funded by MICIU/AEI/10.13039/501100011033/ and FEDER, EU.es_ES
dc.description.abstractIn the quest to improve energy efficiency in residential environments, home energy management systems (HEMSs) have emerged as an effective solution, leveraging artificial intelligence (AI) technologies to improve energy efficiency. This study proposes a deep learning-based approach employing Long Short-Term Memory (LSTM) neural networks to predict household energy usage based on power consumption data from common appliances, such as lamps, fans, air conditioners, televisions, and computers. The model comprises two interrelated submodels: one predicts the individual energy consumption and usage time of each device, while the other estimates the total energy consumption of connected appliances. This dual structure enhances accuracy by capturing both device-specific consumption patterns and overall household energy use, facilitating informed decision-making at multiple levels. Following a systematic methodology that includes model building, training, and evaluation, the LSTM model achieved a low test set loss and mean squared error (MSE), with values of 0.0163 for individual consumption and usage time and 0.0237 for total consumption. Additionally, the predictive performance was strong, with MSE values of 1.0464 × 10−6 for usage time, 0.0163 for individual consumption, and 0.0168 for total consumption. The analysis of scatter plots and residuals revealed a high degree of correspondence between predicted and actual values, validating the model’s accuracy and reliability in energy forecasting. This study represents a significant advancement in intelligent home energy management, contributing to improved efficiency and promoting sustainable consumption practices.es_ES
dc.description.sponsorshipUniversity of Sucrees_ES
dc.description.sponsorshipUniversity of Granadaes_ES
dc.description.sponsorshipMICIU/AEI/10.13039/501100011033/PID2022-136779OB-C33 (PLEISAR)es_ES
dc.description.sponsorshipFEDER, EU.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectHEMSes_ES
dc.subjectEnergy consumption predictiones_ES
dc.subjectDeep learninges_ES
dc.subjectLSTMes_ES
dc.subjectNetworkses_ES
dc.titleForecasting Residential Energy Consumption with the Use of Long Short-Term Memory Recurrent Neural Networkses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/en18051247
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional