Mostrar el registro sencillo del ítem

dc.contributor.authorHerráiz Gil, Sara
dc.contributor.authorNygren-Jiménez, Elisa
dc.contributor.authorAcosta-Alonso, Diana N.
dc.contributor.authorLeón, Carlos
dc.contributor.authorGuerrero Aspizua, Sara
dc.date.accessioned2025-03-13T09:28:33Z
dc.date.available2025-03-13T09:28:33Z
dc.date.issued2025-03-05
dc.identifier.citationHerráiz-Gil, S.; Nygren-Jiménez, E.; Acosta-Alonso, D.N.; León, C.; Guerrero-Aspizua, S. Artificial Intelligence-Based Methods for Drug Repurposing and Development in Cancer. Appl. Sci. 2025, 15, 2798. https://doi.org/10.3390/app15052798es_ES
dc.identifier.urihttps://hdl.handle.net/10481/103029
dc.descriptionThis study was supported in part by grants from the Spanish Ministry of Science and Innovation and the European Regional Development fund (PID2020-119792RB-I00), the Institute of Health Carlos III (RD21/0001/0022, Spanish Network of Advanced Therapies, TERAV-ISCIII), and the Fundación Mutua Madrileña (project: FMM-AP16030-2024). SHG is supported by a UC3M–PhD research training scholarship (PIPF).es_ES
dc.description.abstractDrug discovery and development remains a complex and time-consuming process, often hindered by high costs and low success rates. In the big data era, artificial intelligence (AI) has emerged as a promising tool to accelerate and optimize these processes, particularly in the field of oncology. This review explores the application of AI-based methods for drug repurposing and natural product-inspired drug design in cancer, focusing on their potential to address the challenges and limitations of traditional drug discovery approaches. We delve into various AI-based approaches (machine learning, deep learning, and others) that are currently being employed for these purposes, and the role of experimental techniques in these approaches. By systematically reviewing the literature, we aim to provide a comprehensive overview of the current state of AI-assisted cancer drug discovery workflows, highlighting AI’s contributions to accelerating drug development, reducing costs, and improving therapeutic outcomes. This review also discusses the challenges and opportunities associated with the integration of AI into the drug discovery pipeline, such as data quality, interpretability, and ethical considerations.es_ES
dc.description.sponsorshipSpanish Ministry of Science and Innovationes_ES
dc.description.sponsorshipEuropean Regional Development fund (PID2020-119792RB-I00)es_ES
dc.description.sponsorshipInstitute of Health Carlos III (RD21/0001/0022, Spanish Network of Advanced Therapies, TERAV-ISCIII)es_ES
dc.description.sponsorshipFundación Mutua Madrileña (project: FMM-AP16030-2024)es_ES
dc.description.sponsorshipUC3M–PhD research training scholarship (PIPF)es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDrug repurposinges_ES
dc.subjectArtificial intelligence es_ES
dc.subjectMachine learninges_ES
dc.subjectCancer es_ES
dc.titleArtificial Intelligence-Based Methods for Drug Repurposing and Development in Canceres_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/app15052798
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional