Afficher la notice abrégée

dc.contributor.authorCamacho Páez, José 
dc.contributor.authorRodríguez Gómez, Rafael A.
dc.date.accessioned2025-03-04T08:12:37Z
dc.date.available2025-03-04T08:12:37Z
dc.date.issued2025-02-25
dc.identifier.citationCamacho, J.; RodríguezGómez, R.A. Data Quality Tools to Enhance a Network Anomaly Detection Benchmark. Data 2025, 10, 33. https://doi.org/10.3390/ data10030033es_ES
dc.identifier.urihttps://hdl.handle.net/10481/102834
dc.description.abstractNetwork traffic datasets are essential for the construction of traffic models, often using machine learning (ML) techniques. Among other applications, these models can be employed to solve complex optimization problems or to identify anomalous behaviors, i.e., behaviors that deviate from the established model. However, the performance of the ML model depends, among other factors, on the quality of the data used to train it. Benchmark datasets, with a profound impact on research findings, are often assumed to be of good quality by default. In this paper, we derive four variants of a benchmark dataset in network anomaly detection (UGR’16, a flow-based real-world traffic dataset designed for anomaly detection), and show that the choice among variants has a larger impact on model performance than the ML technique used to build the model. To analyze this phenomenon, we propose a methodology to investigate the causes of these differences and to assess the quality of the data labeling. Our results underline the importance of paying more attention to data quality assessment in network anomaly detection.es_ES
dc.description.sponsorshipAgencia Estatal de Investigación in Spain, MCIN/AEI/ 10.13039/501100011033, grant No. PID2020-113462RB-I00es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectNetflowes_ES
dc.subjectUGR’16es_ES
dc.subjectanomaly detectiones_ES
dc.titleData quality tools to enhance a network anomaly detection benchmarkes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/data10030033
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional