Mostrar el registro sencillo del ítem

dc.contributor.authorPolo Rodríguez, Aurora
dc.contributor.authorEscobedo Araque, Pablo 
dc.contributor.authorMartínez Martí, Fernando
dc.contributor.authorMarcén-Cinca, Noel
dc.contributor.authorCarvajal, Miguel A.
dc.contributor.authorMedina Quero, Javier
dc.contributor.authorMartínez García, María Sofía
dc.date.accessioned2025-03-03T09:13:44Z
dc.date.available2025-03-03T09:13:44Z
dc.date.issued2025-02-28
dc.identifier.citationPolo-Rodríguez, A.; Escobedo, P.; Martínez-Martí, F.; Marcen-Cinca, N.; Carvajal, M.A.; Medina-Quero, J.; Martínez-García, M.S. A Comparative Study of Plantar Pressure and Inertial Sensors for Cross-Country Ski Classification Using Deep Learning. Sensors 2025, 25, 1500. https://doi.org/10.3390/ s25051500es_ES
dc.identifier.urihttps://hdl.handle.net/10481/102807
dc.description.abstractThis work presents a comparative study of low cost and low invasiveness sensors (plantar pressure and inertial measurement units) for classifying cross-country skiing techniques. A dataset was created for symmetrical comparative analysis, with data collected from skiers using instrumented insoles that measured plantar pressure, foot angles, and acceleration. A deep learning model based on CNN and LSTM was trained on various sensor combinations, ranging from two specific pressure sensors to a full multisensory array per foot incorporating 4 pressure sensors and an inertial measurement unit with accelerometer, magnetometer, and gyroscope. Results demonstrate an encouraging performance with plantar pressure sensors and classification accuracy closer to inertial sensing. The proposed approach achieves a global average accuracy of 94% to 99% with a minimal sensor setup, highlighting its potential for low-cost and precise technique classification in cross-country skiing and future applications in sports performance analysis.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectcross-country ski gear classificationes_ES
dc.subjectskating instrumented insoleses_ES
dc.subjectpressure sensorses_ES
dc.titleA comparative study of plantar pressure and inertial sensors for cross-country ski classification using deep learninges_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/ s25051500
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional