Mostrar el registro sencillo del ítem

dc.contributor.authorSuárez Ferreira, Juliett
dc.contributor.authorSlavkovik, Marija
dc.contributor.authorCasillas Barranquero, Jorge 
dc.date.accessioned2025-02-27T09:12:11Z
dc.date.available2025-02-27T09:12:11Z
dc.date.issued2025-02-13
dc.identifier.citationSuárez Ferreira, J., Slavkovik, M. & Casillas, J. General procedure to measure fairness in regression problems. Int J Data Sci Anal (2025). https://doi.org/10.1007/s41060-025-00721-2es_ES
dc.identifier.urihttps://hdl.handle.net/10481/102765
dc.description.abstractFairness in artificial intelligence has emerged as a critical ethical concern, with most research focusing on classification tasks despite the prevalence of regression problems in real-world applications. We address this gap by presenting a general procedure for measuring fairness in regression problems, focusing on statistical parity as a fairness metric. Through extensive experimental analysis, we evaluate how different methodological choices, such as discretizationmethods, algorithm selection, and parameter optimization, impact fairness outcomes in regression tasks. Our primary contribution is a systematic framework that helps practitioners assess and compare fairness across various approaches to solving regression problems, providing clear guidelines for selecting appropriate strategies based on specific problem requirements. The results demonstrate the importance of carefully considering procedural decisions when evaluating fairness in regression contexts, as these choices influence both model performance and fairness outcomes.es_ES
dc.description.sponsorshipUniversidad de Granada/ CBUAes_ES
dc.description.sponsorshipGrant no. PI20/01435—funded by the National Institute of Health Carlos III (ISCIII) of Spain and co-funded by the European Uniones_ES
dc.description.sponsorshipGrant no. C-ING-206-UGR23—Applied Research Projects of the University of Granada Research and Transfer Plan 2023, funded by the Andalusia ERDF Operational Program 2021-2027es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectFair AIes_ES
dc.subjectRegressiones_ES
dc.subjectStatistical parityes_ES
dc.titleGeneral procedure tomeasure fairness in regression problemses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s41060-025-00721-2
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional