Mostrar el registro sencillo del ítem
Normalized solutions to a class of (2, q)-Laplacian equations
dc.contributor.author | Baldelli, Laura | |
dc.contributor.author | Yang, Tao | |
dc.date.accessioned | 2025-02-27T08:12:58Z | |
dc.date.available | 2025-02-27T08:12:58Z | |
dc.date.issued | 2025-02-07 | |
dc.identifier.citation | Baldelli, L. & Yang, T. (2025). Normalized solutions to a class of (2, q)-Laplacian equations. Advanced Nonlinear Studies, 25(1), 225-256. https://doi.org/10.1515/ans-2023-0163 | es_ES |
dc.identifier.uri | https://hdl.handle.net/10481/102757 | |
dc.description.abstract | This paper is concerned with the existence of normalized solutions to a class of (2, q)-Laplacian equations in all the possible cases with respect to the mass critical exponents 2(1 + 2/N), q(1 + 2/N). In the mass subcritical cases, we study a global minimization problem and obtain a ground state solution. While in the mass critical cases, we prove several nonexistence results. At last, we derive a ground state and infinitely many radial solutions in the mass supercritical case. Compared with the classical Schrödinger equation, the (2, q)-Laplacian equation possesses a quasi-linear term, which brings in some new difficulties and requires a more subtle analysis technique. Moreover, the vector field → a ( ξ ) = | ξ | q − 2 ξ corresponding to the q-Laplacian is not strictly monotone when q < 2, so we shall consider separately the case q < 2 and the case q > 2. | es_ES |
dc.description.sponsorship | National Natural Science Foundation of China (Grant No. 12201564) | es_ES |
dc.description.sponsorship | Scientific Research Fund (Grant No. YS304221948) | es_ES |
dc.description.sponsorship | Young Doctor Program of Zhejiang Normal University (Grant No. ZZ323205020520013055) | es_ES |
dc.description.sponsorship | National Science Centre, Poland (Grant No. 2020/37/B/ST1/02742) | es_ES |
dc.description.sponsorship | Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | De Gruyter | es_ES |
dc.rights | Atribución 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | (2, q)-Laplacian | es_ES |
dc.subject | normalized solutions | es_ES |
dc.subject | ground state solutions | es_ES |
dc.title | Normalized solutions to a class of (2, q)-Laplacian equations | es_ES |
dc.type | journal article | es_ES |
dc.rights.accessRights | open access | es_ES |
dc.identifier.doi | 10.1515/ans-2023-0163 | |
dc.type.hasVersion | VoR | es_ES |