Afficher la notice abrégée

dc.contributor.authorTammisetti, Vasu
dc.contributor.authorStettinger, Georg
dc.contributor.authorPegalajar Cuéllar, Manuel 
dc.contributor.authorMolina Solana, Miguel José 
dc.date.accessioned2025-02-26T12:04:15Z
dc.date.available2025-02-26T12:04:15Z
dc.date.issued2025-01-24
dc.identifier.citationTammisetti, V.; Stettinger, G.; Cuellar, M.P.; Molina-Solana, M. Meta-YOLOv8: Meta-Learning- Enhanced YOLOv8 for Precise Traffic Light Color Detection in ADAS. Electronics 2025, 14, 468. https:// doi.org/10.3390/electronics14030468es_ES
dc.identifier.urihttps://hdl.handle.net/10481/102736
dc.description.abstractThe ability to accurately detect traffic light color is critical for the functioning of Advanced Driver Assistance Systems (ADAS), as it directly impacts a vehicle’s safety and operational efficiency. This paper introduces Meta-YOLOv8, an improvement over YOLOv8 based on meta-learning, designed explicitly for traffic light color detection focusing on color recognition. In contrast to conventional models, Meta-YOLOv8 focuses on the illuminated portion of traffic signals, enhancing accuracy and extending the detection range in challenging conditions. Furthermore, this approach reduces the computational load by filtering out irrelevant data. An innovative labeling technique has been implemented to address real-time weather-related detection issues, although other bright objects may occasionally confound it. Our model employs meta-learning principles to mitigate confusion and boost confidence in detections. Leveraging task similarity and prior knowledge enhances detection performance across diverse lighting and weather conditions. Metalearning also reduces the necessity for extensive datasets while maintaining consistent performance and adaptability to novel categories. The optimized feature weighting for precise color differentiation, coupled with reduced latency and computational demands, enables a faster response from the driver and reduces the risk of accidents. This represents a significant advancement for resource-constrained ADAS. A comparative assessment of Meta-YOLOv8 with traditional models, including SSD, Faster R-CNN, and Detection Transformers (DETR), reveals that it outperforms these models, achieving an F1 score, accuracy of 93% and a precision rate of 97%.es_ES
dc.description.sponsorshipInfineon Technologies AG (Munich, Germany)es_ES
dc.description.sponsorshipUniversidad de Granadaes_ES
dc.description.sponsorshipGrant Agreement No. 101076754 (AIthena project). European Union’s Horizon Europe Research and Innovation Programes_ES
dc.description.sponsorshipProject IA4TES MIA.2021.M04.0008. Spanish Ministry of Economic Affairs and Digital Transformation (NextGenerationEU funds)es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectmeta-learninges_ES
dc.subjectmeta-YOLOes_ES
dc.subjectYOLOes_ES
dc.titleMeta-YOLOv8: Meta-Learning-Enhanced YOLOv8 for Precise Traffic Light Color Detection in ADASes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.3390/electronics14030468
dc.type.hasVersionVoRes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional