Mostrar el registro sencillo del ítem

dc.contributor.authorMasegosa, Andrés R.
dc.contributor.authorGómez Olmedo, Manuel 
dc.date.accessioned2025-02-26T08:55:12Z
dc.date.available2025-02-26T08:55:12Z
dc.date.issued2025-01-24
dc.identifier.urihttps://hdl.handle.net/10481/102707
dc.description.abstractThis study presents a novel variational framework for structural learning in Bayesian networks (BNs), addressing the key limitation of existing Bayesian methods: their lack of scalability to large graphs with many variables. Traditional approaches, such as MCMC and stochastic search, often encounter computational barriers due to the super-exponential growth of the Directed Acyclic Graph (DAG) space. Our method introduces a scalable alternative by leveraging a factorized variational family to approximate the posterior distribution over DAG structures, enabling efficient computation of Bayesian scores and predictive posterior inference. Unlike previous methods, which are constrained by high computational costs or domainspecific limitations, this approach achieves tractability through mean-field variational inference and tractable updating equations, allowing application to significantly larger datasets. Empirical results on benchmark datasets demonstrate that the proposed framework consistently outperforms state-of-the-art methods in terms of scalability and predictive accuracy while maintaining robustness across diverse scenarios. This work represents a key step towards scalable Bayesian structural learning and opens avenues for future research to refine the variational approximation and incorporate advanced parallelization techniques.es_ES
dc.description.sponsorshipPID2022-139293NB-C33, funded by Ministerio de Ciencia, Inovación y Universidades (MICIU)/Agencia Estatal de Investigación (AEI)/10.13039/501100011033 and the European Regional Development Fund (ERDF) of the European Union.es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBayesian networkses_ES
dc.subjectprobabilistic graphical modelses_ES
dc.subjectstructural learninges_ES
dc.titleToward Variational Structural Learning of Bayesian Networkses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1109/ACCESS.2025.3533878
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional