Afficher la notice abrégée

dc.contributor.authorVidal, Marc
dc.contributor.authorLeman, Marc
dc.contributor.authorAguilera Del Pino, Ana María 
dc.date.accessioned2025-02-18T10:04:19Z
dc.date.available2025-02-18T10:04:19Z
dc.date.issued2024-12-23
dc.identifier.citationPublished version: Vidal, M., Leman, M. & Aguilera, A.M. Functional independent component analysis by choice of norm: a framework for near-perfect classification. Adv Data Anal Classif (2025). https://doi.org/10.1007/s11634-024-00622-5es_ES
dc.identifier.urihttps://hdl.handle.net/10481/102449
dc.descriptionThis research was partially supported by the Methusalem funding from the Flemish Government and the project FQM-307 of the Government of Andalusia (Spain). We also acknowledge the financial support of Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación (grant number: PID2020-113961GB-I00) and the IMAG María de Maeztu grant CEX2020-001105-M/AEI/10.13039/501100011033.es_ES
dc.description.abstractWe develop a theory for functional independent component analysis in an infinite dimensional framework using Sobolev spaces that accommodate smoother functions. The notion of penalized kurtosis is introduced motivated by Silverman’s method for smoothing principal components. This approach allows for a classical definition of in dependent components obtained via projection onto the eigenfunctions of a smoothed kurtosis operator mapping a whitened functional random variable. We discuss the theoretical properties of this operator in relation to a generalized Fisher discriminant function and the relationship it entails with the Feldman-Hajek dichotomy for ´ Gaussian measures, both of which are critical to the principles of functional classification. The proposed estimators are a particularly competitive alternative in binary classification of functional data and can eventually achieve the so-called near-perfect classification, which is a genuine phenomenon of high-dimensional data. Our methods are illustrated through simulations, various real datasets, and used to model electroencephalographic biomarkers for the diagnosis of depressive disorder.es_ES
dc.description.sponsorshipFlemish Government, Methusalemes_ES
dc.description.sponsorshipGovernment of Andalusia (Spain) FQM-307es_ES
dc.description.sponsorshipAgencia Estatal de Investigación, Ministerio de Ciencia e Innovación (PID2020-113961GB-I00)es_ES
dc.description.sponsorshipIMAG María de Maeztu CEX2020-001105-M/AEI/10.13039/501100011033es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectDepressive disorderes_ES
dc.subjectEEGes_ES
dc.subjectFunctional classificationes_ES
dc.subjectFeldman-Hajek dichotomyes_ES
dc.subjectKurtosises_ES
dc.titleFunctional independent component analysis by choice of norm: a framework for near-perfect classificationes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1007/s11634-024-00622-5
dc.type.hasVersionSMURes_ES


Fichier(s) constituant ce document

[PDF]

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée

Atribución 4.0 Internacional
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional