Mostrar el registro sencillo del ítem

dc.contributor.authorMartín Suárez, Miguel 
dc.date.accessioned2025-02-17T13:33:52Z
dc.date.available2025-02-17T13:33:52Z
dc.date.issued2024
dc.identifier.citationPublished version: M. Martín / Journal of Functional Analysis 288 (2025) 110815. https://doi.org/10.1016/j.jfa.2024.110815es_ES
dc.identifier.urihttps://hdl.handle.net/10481/102416
dc.descriptionThe author has been supported by MICIU/AEI/10.13039/501100011033 and ERDF/EU through the grant PID2021-122126NB-C31, and by “Maria de Maeztu” Excellence Unit IMAG, reference CEX2020-001105-M funded by MICIU/AEI/10.13039/501100011033.es_ES
dc.description.abstractWe construct a Banach space X for which the set of norm-attaining functionals NA(X, R) does not contain any non-trivial cone. Even more, given two linearly independent norm-attaining functionals on X, no other element of the segment between them attains its norm. Equivalently, the intersection of NA(X, R) with a two-dimensional subspace of X∗ is contained in the union of two lines. In terms of proximinality, we show that for every closed subspace M of X of codimension two, at most four elements of the unit sphere of X/M have a representative of norm-one. We further relate this example with an open problem on normattaining operators.es_ES
dc.description.sponsorshipMICIU/AEI/10.13039/501100011033 PID2021-122126NB-C31es_ES
dc.description.sponsorshipERDF/EUes_ES
dc.description.sponsorshipMICIU/AEI/10.13039/501100011033 Maria de Maeztu CEX2020-001105-Mes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleA Banach space whose set of norm-attaining functionals is algebraically triviales_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.jfa.2024.110815
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional