Mostrar el registro sencillo del ítem

dc.contributor.authorHerrera Triguero, Francisco 
dc.contributor.authorJiménez López, Daniel
dc.contributor.authorArgente-Garrido, Alberto
dc.contributor.authorRodríguez Barroso, Nuria
dc.contributor.authorZuheros, Cristina
dc.contributor.authorAguilera Martos, Ignacio 
dc.contributor.authorBello, Beatriz
dc.contributor.authorGarcía-Márquez, Mario
dc.contributor.authorLuzón García, María Victoria 
dc.date.accessioned2025-02-17T13:11:25Z
dc.date.available2025-02-17T13:11:25Z
dc.date.issued2025
dc.identifier.citationPublished version: F. Herrera et al. Information Fusion 117 (2025) 102792. https://doi.org/10.1016/j.inffus.2024.102792es_ES
dc.identifier.urihttps://hdl.handle.net/10481/102415
dc.descriptionThis research results from the Strategic Project IAFER-Cib (C074/23), as a result of the collaboration agreement signed between the National Institute of Cybersecurity (INCIBE) and the University of Granada. This initiative is carried out within the framework of the Recovery, Transformation and Resilience Plan funds, financed by the European Union (Next Generation).es_ES
dc.description.abstractIn the realm of Artificial Intelligence (AI), the need for privacy and security in data processing has become paramount. As AI applications continue to expand, the collection and handling of sensitive data raise concerns about individual privacy protection. Federated Learning (FL) emerges as a promising solution to address these challenges by enabling decentralized model training on local devices, thus preserving data privacy. This paper introduces FLEX: a FLEXible Federated Learning Framework designed to provide maximum flexibility in FL research experiments. By offering customizable features for data distribution, privacy parameters, and communication strategies, FLEX empowers researchers to innovate and develop novel FL techniques. The framework also includes libraries for specific FL implementations including: (1) anomalies, (2) blockchain, (3) adversarial attacks and defences, (4) natural language processing and (5) decision trees, enhancing its versatility and applicability in various domains. Overall, FLEX represents a significant advancement in FL research, facilitating the development of robust and efficient FL applications.es_ES
dc.description.sponsorshipNational Institute of Cybersecurity (INCIBE) (C074/23)es_ES
dc.description.sponsorshipUniversity of Granadaes_ES
dc.description.sponsorshipEuropean Union (Next Generation)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectFederated Learninges_ES
dc.subjectDistributed machine learninges_ES
dc.subjectData Privacyes_ES
dc.subjectResearch software frameworkes_ES
dc.titleFLEX: Flexible Federated Learning Frameworkes_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.inffus.2024.102792
dc.type.hasVersionSMURes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional