| dc.contributor.author | Fovelle, Audrey | |
| dc.date.accessioned | 2025-02-17T09:54:25Z | |
| dc.date.available | 2025-02-17T09:54:25Z | |
| dc.date.issued | 2024-11-20 | |
| dc.identifier.citation | Published version: Fovelle, Audrey. Journal of Functional Analysis Volume 288, Issue 4, 15 February 2025, 110763. https://doi.org/10.1016/j.jfa.2024.110763 | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10481/102399 | |
| dc.description | Research partially supported by MCIN/AEI/10.13039/501100011033 grant PID2021-122126NBC31 and by “Maria de Maeztu” Excellence Unit IMAG, reference CEX2020-001105-M funded by
MCIN/AEI/10.13039/501100011033. | es_ES |
| dc.description.abstract | We prove an optimal result of stability under ℓp-sums of some concentration
properties for Lipschitz maps defined on Hamming graphs into Banach spaces. As an
application, we give examples of spaces with Szlenk index arbitrarily high that admit
nevertheless a concentration property. In particular, we get the very first examples of
Banach spaces with concentration but without asymptotic smoothness property. | es_ES |
| dc.description.sponsorship | MCIN/AEI/10.13039/501100011033 PID2021-122126NBC31, CEX2020-001105-M | es_ES |
| dc.language.iso | eng | es_ES |
| dc.publisher | Elsevier | es_ES |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
| dc.subject | Banach spaces | es_ES |
| dc.subject | Hamming graphs | es_ES |
| dc.subject | Asymptotic smoothness | es_ES |
| dc.subject | Nonlinear embeddings | es_ES |
| dc.subject | Concentration properties | es_ES |
| dc.title | Asymptotic smoothness, concentration properties in Banach spaces and applications | es_ES |
| dc.type | journal article | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.identifier.doi | 10.1016/j.jfa.2024.110763 | |
| dc.type.hasVersion | SMUR | es_ES |