Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía Gil, Diego Jesús 
dc.contributor.authorLópez, David
dc.contributor.authorArgüelles-Martino, Daniel
dc.contributor.authorCarrasco Castillo, Jacinto 
dc.contributor.authorAguilera Martos, Ignacio 
dc.contributor.authorLuengo Martín, Julián 
dc.contributor.authorHerrera Triguero, Francisco 
dc.date.accessioned2025-02-10T11:54:16Z
dc.date.available2025-02-10T11:54:16Z
dc.date.issued2025-02
dc.identifier.citationD. García-Gil, D. López, D. Argüelles-Martino et al. Information Sciences 690 (2025) 121587. https://doi.org/10.1016/j.ins.2024.121587es_ES
dc.identifier.urihttps://hdl.handle.net/10481/102154
dc.descriptionThis research results from the Strategic Project IAFER-Cib (C074/23), as a result of the collaboration agreement signed between the National Institute of Cybersecurity (INCIBE) and the University of Granada. This initiative is carried out within the framework of the Recovery, Transformation and Resilience Plan funds, financed by the European Union (Next Generation).es_ES
dc.description.abstractBackground: Anomaly detection is the process of identifying observations that differ greatly from the majority of data. Unsupervised anomaly detection aims to find outliers in data that is not labeled, therefore, the anomalous instances are unknown. The exponential data generation has led to the era of Big Data. This scenario brings new challenges to classic anomaly detection problems due to the massive and unsupervised accumulation of data. Traditional methods are not able to cop up with computing and time requirements of Big Data problems. Methods: In this paper, we propose four distributed algorithm designs for Big Data anomaly detection problems: HBOS_BD, LODA_BD, LSCP_BD, and XGBOD_BD. They have been designed following the MapReduce distributed methodology in order to be capable of handling Big Data problems. Results: These algorithms have been integrated into an Spark Package, focused on static and dynamic Big Data anomaly detection tasks, namely AnomalyDSD. Experiments using a real-world case of study have shown the performance and validity of the proposals for Big Data problems. Conclusions: With this proposal, we have enabled the practitioner to efficiently and effectively detect anomalies in Big Data datasets, where the early detection of an anomaly can lead to a proper and timely decision.es_ES
dc.description.sponsorshipNational Institute of Cybersecurity (INCIBE) IAFER-Cib (C074/23)es_ES
dc.description.sponsorshipUniversity of Granadaes_ES
dc.description.sponsorshipEuropean Union (Next Generation)es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBig Dataes_ES
dc.subjectAnomaly detectiones_ES
dc.subjectOutlier detectiones_ES
dc.subjectUnsupervised learninges_ES
dc.titleDeveloping Big Data anomaly dynamic and static detection algorithms: AnomalyDSD spark packagees_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doi10.1016/j.ins.2024.121587
dc.type.hasVersionVoRes_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional