| dc.contributor.author | Rueda Zoca, Abraham | |
| dc.date.accessioned | 2025-02-10T06:57:13Z | |
| dc.date.available | 2025-02-10T06:57:13Z | |
| dc.date.issued | 2024-02-08 | |
| dc.identifier.citation | Ann. Funct. Anal. (2025) 16:18 | es_ES |
| dc.identifier.uri | https://hdl.handle.net/10481/102096 | |
| dc.description.abstract | The aim of this note is to prove that, given two superreflexive Banach spaces X and
Y , then X⊗πY is superreflexive if and only if either X or Y is finite-dimensional. In
a similar way, we prove that X⊗εY is superreflexive if and only if either X or Y is
finite-dimensional. | es_ES |
| dc.language.iso | eng | es_ES |
| dc.rights | Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License | es_ES |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/ | es_ES |
| dc.title | Superreflexive tensor product spaces | es_ES |
| dc.type | journal article | es_ES |
| dc.rights.accessRights | open access | es_ES |
| dc.identifier.doi | https://doi.org/10.1007/s43034-025-00408-6 | |