Show simple item record

dc.contributor.authorRueda Zoca, Abraham
dc.date.accessioned2025-02-10T06:57:13Z
dc.date.available2025-02-10T06:57:13Z
dc.date.issued2024-02-08
dc.identifier.citationAnn. Funct. Anal. (2025) 16:18es_ES
dc.identifier.urihttps://hdl.handle.net/10481/102096
dc.description.abstractThe aim of this note is to prove that, given two superreflexive Banach spaces X and Y , then X⊗πY is superreflexive if and only if either X or Y is finite-dimensional. In a similar way, we prove that X⊗εY is superreflexive if and only if either X or Y is finite-dimensional.es_ES
dc.language.isoenges_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es_ES
dc.titleSuperreflexive tensor product spaceses_ES
dc.typejournal articlees_ES
dc.rights.accessRightsopen accesses_ES
dc.identifier.doihttps://doi.org/10.1007/s43034-025-00408-6


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Except where otherwise noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License